Design, Manufacturing, and Performance Evaluation of a Novel Smart Roller Bearing Equipped with Shape Memory Alloy Wires

Author(s):  
Shuai Li ◽  
Farshad Hedayati Dezfuli ◽  
M. Shahria Alam ◽  
Jingquan wang

Abstract In this study, a new type of seismic isolation device, called SMA wire-based roller bearing (SMA-RB) is developed and introduced. The SMA-RB has been designed, manufactured, and experimentally tested. This bearing consists of cylindrical roller bearings and SMA wires with straight or cross configurations, as supplementary damping elements. In such a smart bearing, the superelastic SMA wires are passed through the hooks/pulleys attached to the supporting plates of the bearings in different configurations. The rollers provide lateral flexibility, and SMA wires supply energy dissipation and self-centering properties. In the manufacturing stage, a new mechanism for coupling wires (i.e. SMA wire joiner/coupler) is proposed. The results show that SMA wires, made of Nickle Titanium (NiTi), provide a self-centered damping mechanism with almost zero residual deformation which can effectively control the device from over-displacement. While using pulleys and newly designed wire joiners in the SMA-RB, the bearing can experience a stable cyclic behavior. Since the rollers generate a negligible amount of frictional force, the superelastic NiTi wires with a flag-shaped hysteresis mainly contribute to the overall shear hysteretic response of the SMA-RB. A triangular-shaped constitutive model can be used to accurately describe the hysteretic behavior of SMA-RB with different wire configurations.

2003 ◽  
Vol 112 ◽  
pp. 1177-1180 ◽  
Author(s):  
A. Schuster ◽  
H. F. Voggenreiter ◽  
D. C. Dunand ◽  
G. Eggeler

2021 ◽  
Vol 2 (1) ◽  
pp. 46-62
Author(s):  
Santiago Iglesias-Baniela ◽  
Juan Vinagre-Ríos ◽  
José M. Pérez-Canosa

It is a well-known fact that the 1989 Exxon Valdez disaster caused the escort towing of laden tankers in many coastal areas of the world to become compulsory. In order to implement a new type of escort towing, specially designed to be employed in very adverse weather conditions, considerable changes in the hull form of escort tugs had to be made to improve their stability and performance. Since traditional winch and ropes technologies were only effective in calm waters, tugs had to be fitted with new devices. These improvements allowed the remodeled tugs to counterbalance the strong forces generated by the maneuvers in open waters. The aim of this paper is to perform a comprehensive literature review of the new high-performance automatic dynamic winches. Furthermore, a thorough analysis of the best available technologies regarding towline, essential to properly exploit the new winches, will be carried out. Through this review, the way in which the escort towing industry has faced this technological challenge is shown.


2021 ◽  
pp. 136943322110646
Author(s):  
Peng Zhou ◽  
Shui Wan ◽  
Xiao Wang ◽  
Yingbo Zhu ◽  
Muyun Huang

The attenuation zones (AZs) of periodic structures can be used for seismic isolation design. To cover the dominant frequencies of more seismic waves, this paper proposes a new type of periodic isolation foundation (PIF) with an extremely wide low-frequency AZ of 3.31 Hz–17.01 Hz composed of optimized unit A with a wide AZ and optimized unit B with a low-frequency AZ. The two kinds of optimized units are obtained by topology optimization on the smallest periodic unit with the coupled finite element-genetic algorithm (GA) methodology. The transmission spectra of shear waves and P-waves through the proposed PIF of finite size are calculated, and the results show that the AZ of the PIF is approximately the superposition of the AZs of the two kinds of optimized units. Additionally, shake tests on a scale PIF specimen are performed to verify the attenuation performance for elastic waves within the designed AZs. Furthermore, numerical simulations show that the acceleration responses of the bridge structure with the proposed PIF are attenuated significantly compared to those with a concrete foundation under the action of different seismic waves. Therefore, the newly proposed PIF is a promising option for the reduction of seismic effects in engineering structures.


2021 ◽  
Vol 2021.58 (0) ◽  
pp. C042
Author(s):  
Naoto KANAYAMA ◽  
Hiroyuki KIMURA ◽  
Masahiro SEKIMOTO ◽  
Tohru SASAKI

Author(s):  
Kengo Goda ◽  
Osamu Furuya ◽  
Kohei Imamura ◽  
Kenta Ishihana

At the present, base isolation system has been recognized by general earthquake resistant technique since the Great Hanshin Earthquake 1995. The seismic isolation will be aggressively applied to not only architectural and civil structures but also various structures, because the effectiveness on seismic safety had been demonstrated again in the Great East Japan Earthquake. In generally, although the base isolation system is divided into laminated rubber bearing type and friction sliding bearing type. In the case of former type, shape factor, maximum or minimum outer shapes and so on are restricted by the material characteristics in visco-elastic material. In general, the isolation structure is used in high damping rubber. However, we pay attention to base isolation using urethane elastomer. Urethane elastomer has excellent elasticity, mechanical strength, abrasion resistance, weather resistance, oil resistance, impact resistance the absorbent, anti-vibration and excellent low-temperature properties. Furthermore, it is possible to impart various characteristics by a combination of isocyanate and polyol and chain extender, requires no large-scale apparatus, it has the advantage molecular design is easy. In previous study, the research and development of laminated type base isolation device using urethane elastomer was carried out to upgrade a seismic safety for various structures. The fundamental characteristics was investigated from several loading test by using various experimental devices, and the design formula for the stiffness and equivalent damping coefficient is formulated as an approximate expression of mechanical characteristics until now. It was confirmed that urethane elastomer is not hardening up to 500% shear strain. Moreover, the experimental examination for aged deterioration in the urethane material has been continuously carried out. As the results, it was confirmed that the laminated type seismic isolation device using urethane elastomer is possible to develop as a practicable device from the stable mechanical properties as considering in design step. In this study, the small-scale laminated type base isolation device using urethane elastomer is advanced to the direction of further technical upgrading and of scale down for light-weight structure as a sever rack. The first stage, basic properties of the urethane elastomer has been investigated by loading test. Furthermore, the design equation is created by loading test using urethane elastomer. The validity of the design equation has been confirmed. The second stage, the compression creep test with laminated type base isolation device has been investigated to confirm an effect on light-weight mechanical devices.


2006 ◽  
Vol 2006.12 (0) ◽  
pp. 471-472 ◽  
Author(s):  
Nobuhiro Wakabayashi ◽  
Kenichiro Ohmata ◽  
Osamu Tanaka

2012 ◽  
Vol 204-208 ◽  
pp. 869-871
Author(s):  
Cai Hua Wang ◽  
Hui Jian Li ◽  
Jian Feng Wu

The multi-storey reinforced concrete frame structure used lead rubber pad as the base isolation device. The paper had modal analysis of base-isolated multi-storey reinforced concrete frame structure using the ANSYS software. Comparing the frequency and vibration mode before and after isolation under El-Centro wave, It concluded the leader rubber pad have seismic isolation effect for multi-storey reinforced concrete frame structure .


Sign in / Sign up

Export Citation Format

Share Document