scholarly journals Hermite-Chebyshev pseudospectral method for inhomogeneous superconducting strip problems and magnetic flux pump modeling

Author(s):  
Vladimir L Sokolovsky ◽  
Leonid Prigozhin

Abstract Numerical simulation of superconducting devices is a powerful tool for understanding the principles of their work and improving their design. Usually, such simulations are based on a finite element method but, recently, a different approach, based on the spectral technique, has been presented for very efficient solution of several applied superconductivity problems described by one-dimensional integro-differential equations or a system of such equations. Here we propose a new pseudospectral method for two-dimensional magnetization and transport current superconducting strip problems with an arbitrary current-voltage relation, spatially inhomogeneous strips, and strips in a nonuniform applied field. The method is based on the bivariate expansions in Chebyshev polynomials and Hermite functions. It can be used for numerical modeling magnetic flux pumps of different types and investigating AC losses in coated conductors with local defects. Using a realistic two-dimensional version of the superconducting dynamo benchmark problem as an example, we showed that our new method is a competitive alternative to finite element methods.

Author(s):  
Neander Berto Mendes ◽  
Lineu José Pedroso ◽  
Paulo Marcelo Vieira Ribeiro

ABSTRACT: This work presents the dynamic response of a lock subjected to the horizontal S0E component of the El Centro earthquake for empty and completely filled water chamber cases, by coupled fluid-structure analysis. Initially, the lock was studied by approximation, considering it similar to the case of a double piston coupled to a two-dimensional acoustic cavity (tank), representing a simplified analytical model of the fluid-structure problem. This analytical formulation can be compared with numerical results, in order to qualify the responses of the ultimate problem to be investigated. In all the analyses performed, modeling and numerical simulations were done using the finite element method (FEM), supported by the commercial software ANSYS.


1987 ◽  
Vol 15 (1) ◽  
pp. 30-41 ◽  
Author(s):  
E. G. Markow

Abstract Development of the banded radial tire is discussed. A major contribution of this tire design is a reliable run-flat capability over distances exceeding 160 km (100 mi). Experimental tire designs and materials are considered; a brief theoretical discussion of the mechanics of operation is given based on initial two-dimensional studies and later on more complete finite element modeling. Results of laboratory tests for cornering, rolling resistance, and braking are presented. Low rolling resistance, good cornering and braking properties, and low tread wear rate along with good puncture resistance are among the advantages of the banded radial tire designs.


Author(s):  
Igors Stroganovs ◽  
Andrejs Zviedris

Basic Statements of Research and Magnetic Field of Axial Excitation Inductor GeneratorIn this work the main features of axial excitation inductor generators are described. Mathematical simulation of a magnetic field is realized by using the finite element method. The objective of this work is to elucidate how single elements shape, geometric dimensions and magnetic saturation of magnetic system affect the main characteristics of the field (magnetic induction, magnetic flux linkage). The main directions of a magnetic system optimization are specified.


2020 ◽  
Author(s):  
Bipul Hawlader ◽  
◽  
Chen Wang ◽  
Ripon Karmaker ◽  
Didier Perret ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document