scholarly journals Evolution Through the Post-starburst Phase: Using Post-starburst Galaxies as Laboratories for Understanding the Processes that Drive Galaxy Evolution

2021 ◽  
Vol 133 (1025) ◽  
pp. 072001
Author(s):  
K. Decker French
2020 ◽  
Vol 644 ◽  
pp. A144
Author(s):  
D. Donevski ◽  
A. Lapi ◽  
K. Małek ◽  
D. Liu ◽  
C. Gómez-Guijarro ◽  
...  

The dust-to-stellar mass ratio (Mdust/M⋆) is a crucial, albeit poorly constrained, parameter for improving our understanding of the complex physical processes involved in the production of dust, metals, and stars in galaxy evolution. In this work, we explore trends of Mdust/M⋆ with different physical parameters and using observations of 300 massive dusty star-forming galaxies detected with ALMA up to z ≈ 5. Additionally, we interpret our findings with different models of dusty galaxy formation. We find that Mdust/M⋆ evolves with redshift, stellar mass, specific star formation rates, and integrated dust size, but that evolution is different for main-sequence galaxies than it is for starburst galaxies. In both galaxy populations, Mdust/M⋆ increases until z ∼ 2, followed by a roughly flat trend towards higher redshifts, suggesting efficient dust growth in the distant universe. We confirm that the inverse relation between Mdust/M⋆ and M⋆ holds up to z ≈ 5 and can be interpreted as an evolutionary transition from early to late starburst phases. We demonstrate that the Mdust/M⋆ in starbursts reflects the increase in molecular gas fraction with redshift and attains the highest values for sources with the most compact dusty star formation. State-of-the-art cosmological simulations that include self-consistent dust growth have the capacity to broadly reproduce the evolution of Mdust/M⋆ in main-sequence galaxies, but underestimating it in starbursts. The latter is found to be linked to lower gas-phase metallicities and longer dust-growth timescales relative to observations. The results of phenomenological models based on the main-sequence and starburst dichotomy as well as analytical models that include recipes for rapid metal enrichment are consistent with our observations. Therefore, our results strongly suggest that high Mdust/M⋆ is due to rapid dust grain growth in the metal-enriched interstellar medium. This work highlights the multi-fold benefits of using Mdust/M⋆ as a diagnostic tool for: (1) disentangling main-sequence and starburst galaxies up to z ∼ 5; (2) probing the evolutionary phase of massive objects; and (3) refining the treatment of the dust life cycle in simulations.


2009 ◽  
Vol 5 (S266) ◽  
pp. 499-499
Author(s):  
S. M. Petty ◽  
D. F. de Mello ◽  
J. P. Gardner ◽  
J. S. Gallagher

AbstractWe explore the multiwavelength properties of three nearby starburst galaxies: NGC 3079, NGC 7673, and Mrk 08. We established that each of these galaxies has similar rest-frame far-ultraviolet (FUV) morphologies as Lyman-break galaxies (LBGs) at z ~ 1.5 and 4, when the age of the Universe was ~ 4.3 and ~ 1.6 Gyr, respectively. LBGs are at an important stage in galaxy evolution when the Universe had a peak in the star-formation-rate density. Many LBGs are primarily composed of star-forming clumps, i.e., stellar clusters, with a significant lack of older stellar populations. Here, we present the comparison of the spectral-energy distributions (SEDs) of three nearby starburst galaxies with those of typical LBGs. From our nearby sample, each object has been artificially redshifted to observe what the galaxies would look like at z ~ 1 to 4 in the rest-frame FUV. NGC 3079 is an edge-on Seyfert 2 galaxy. It has a bright bulge and is interacting with two other galaxies, with extended Hi only along NGC 3079. The redshifting process changes its appearance, so that at high z it looks like a chain galaxy with multiple knots of star formation and no bulge. NGC 7673 has extended Hi and the star formation is mostly within the inner optical region in the multiple star-forming clumps defining the galaxy morphology. In the FUV, the galaxy looks highly compact with little detail resolved. As it is artificially redshifted, the galaxy continues to look more spherical. Mrk 8 is a merging pair, with the two galaxies observable in the visible spectrum. It is classified as a Wolf–Rayet galaxy, which suggests a very young burst, and is composed of several large star-forming regions. The FUV image does not resolve the separate galaxies, and the appearance remains similar for each redshift. We use the Gini coefficient, M20, and the Sérsic index to quantify the morphologies. The SEDs of the objects have similarities with LBG stellar population models. Because these local galaxies can be studied in more detail, they act as a bridge between nearby observations of starburst galaxies and high-z starburst galaxies such as LBGs.


2007 ◽  
Vol 3 (S242) ◽  
pp. 417-426 ◽  
Author(s):  
Jeremy Darling

AbstractMasers in starburst galaxies are outstanding probes of a range of phenomena related to galaxy and black hole evolution, and offer unique high brightness temperature illumination that can be used to probe small scales in the host galaxy and in our own. But we require a deeper understanding of the galaxy-scale maser phenomenon if we wish to employ starburst galaxy masers as probes using the next generation of radio telescopes. This review summarizes what is known about the different flavors of masers in starburst galaxies and the setting and structure of OH megamasers. The question of which galaxies produce megamasers and which do not is critical to our understanding of the megamaser phenomenon, and recent studies of HCN and H2CO are particularly instructive. Constraints on the lifetime of OH megamasers and the predictability of OH megamaser line properties are critical issues to address in the near future. It is also time to begin the next wave of OH megamaser surveys at higher redshifts and to finally employ them as probes of starbursts, massive black holes, galaxy evolution, and intervening media.


2006 ◽  
Vol 2 (S235) ◽  
pp. 128-128
Author(s):  
Anne Pellerin ◽  
Martin Meyer ◽  
Jason Harris ◽  
Daniela Calzetti

Assuming that most stars form in clusters (Lada & Lada 2003), one might initially expect to find most massive stars in stellar clusters and to detect most of the UV emission in young compact stellar clusters. However, Meurer et al. (1995) showed that in starburst galaxies only 20% of the UV emission at 2200Å is detected in clusters while 80% is diffuse emission from sources in the inter-cluster medium. This phenomenon is also observed for normal galaxies (Hoopes et al. 2001).


2015 ◽  
Vol 11 (A29B) ◽  
pp. 227-227
Author(s):  
Kelsey Johnson ◽  
Janice Lee

AbstractDo cycles of violent, intense, but short-lived bursts constitute a significant mode of global starformation in present-day galaxies? Such events can have a profound effect on galaxies, particularly those with shallowpotential wells, and observational measures of their prevalence inform our understanding of a wide range of issues ingalaxy evolution. I will highlight what we have learned about starbursts from multi-wavelength observations of galaxiesin the local volume on both galactic and smaller scales, and explore how connections with the study of the deaths ofmassive stars may further our understanding of open issues in galaxy evolution.


1999 ◽  
Vol 193 ◽  
pp. 645-652 ◽  
Author(s):  
Matthew D. Lehnert

I discuss the observational evidence that starburst galaxies are able to drive galactic-scale outflows ('superwinds') and then argue generally that superwinds must have had an important role in galaxy evolution. To explore the role of feedback from massive stars, I review results suggesting that starbursts seem to obey a limiting IR surface brightness of about 1011 L⊙ kpc−2, corresponding to a maximum star-formation rate of about 45M⊙ yr−1kpc−2 for a ‘normal’ initial mass function. I conclude by discussing the role of winds in determining this upper-limit and discuss recent results implying that winds might actually escape the galactic potentials in which they reside.


2020 ◽  
Vol 638 ◽  
pp. A53
Author(s):  
Nastaran Fazeli ◽  
Gerold Busch ◽  
Andreas Eckart ◽  
Françoise Combes ◽  
Persis Misquitta ◽  
...  

Gas inflow processes in the vicinity of galactic nuclei play a crucial role in galaxy evolution and supermassive black hole growth. Exploring the central kiloparsec of galaxies is essential to shed more light on this subject. We present near-infrared H- and K-band results of the nuclear region of the nearby galaxy NGC 1326, observed with the integral-field spectrograph SINFONI mounted on the Very Large Telescope. The field of view covers 9″ × 9″ (650 × 650 pc2). Our work is concentrated on excitation conditions, morphology, and stellar content. The nucleus of NGC 1326 was classified as a LINER, however in our data we observed an absence of ionised gas emission in the central r ∼ 3″. We studied the morphology by analysing the distribution of ionised and molecular gas, and thereby detected an elliptically shaped, circum-nuclear star-forming ring at a mean radius of 300 pc. We estimate the starburst regions in the ring to be young with dominating ages of < 10 Myr. The molecular gas distribution also reveals an elongated east to west central structure about 3″ in radius, where gas is excited by slow or mild shock mechanisms. We calculate the ionised gas mass of 8 × 105 M⊙ completely concentrated in the nuclear ring and the warm molecular gas mass of 187 M⊙, from which half is concentrated in the ring and the other half in the elongated central structure. The stellar velocity fields show pure rotation in the plane of the galaxy. The gas velocity fields show similar rotation in the ring, but in the central elongated H2 structure they show much higher amplitudes and indications of further deviation from the stellar rotation in the central 1″ aperture. We suggest that the central 6″ elongated H2 structure might be a fast-rotating central disc. The CO(3–2) emission observations with the Atacama Large Millimeter/submillimeter Array reveal a central 1″ torus. In the central 1″ of the H2 velocity field and residual maps, we find indications for a further decoupled structure closer to a nuclear disc, which could be identified with the torus surrounding the supermassive black hole.


2002 ◽  
Vol 4 ◽  
pp. 375-375
Author(s):  
T. T. Takeuchi ◽  
T. T. Ishii ◽  
T. Totani

Author(s):  
Abraham Loeb ◽  
Steven R. Furlanetto

This book provides a comprehensive, self-contained introduction to one of the most exciting frontiers in astrophysics today: the quest to understand how the oldest and most distant galaxies in our universe first formed. Until now, most research on this question has been theoretical, but the next few years will bring about a new generation of large telescopes that promise to supply a flood of data about the infant universe during its first billion years after the big bang. This book bridges the gap between theory and observation. It is an invaluable reference for students and researchers on early galaxies. The book starts from basic physical principles before moving on to more advanced material. Topics include the gravitational growth of structure, the intergalactic medium, the formation and evolution of the first stars and black holes, feedback and galaxy evolution, reionization, 21-cm cosmology, and more.


1999 ◽  
Vol 118 (2) ◽  
pp. 797-816 ◽  
Author(s):  
Daniela Calzetti ◽  
Christopher J. Conselice ◽  
John S. Gallagher III ◽  
Anne L. Kinney

Sign in / Sign up

Export Citation Format

Share Document