Measurements of the 107Ag neutron capture cross sections with PHWT at the CSNS Back-n facility

2022 ◽  
Author(s):  
X. X. Li ◽  
L. X. Liu ◽  
W. Jiang ◽  
J. Ren ◽  
H. W. Wang ◽  
...  

Abstract Silver indium cadmium (Ag-In-Cd) control rod is widely used in pressurized water reactor nuclear power plants, and which is continuously consumed in a high neutron flux environment. The mass ratio of 107Ag in Ag-In-Cd control rod is 41.44%. To accurately calculate the consumption value of the control rod, a reliable neutron reaction cross section of the 107Ag is required. Meanwhile, 107Ag is also an important weak r nuclei. Thus, the cross sections for neutron induced interactions with 107Ag are very important both in nuclear energy and nuclear astrophysics. The (n, γ) cross section of 107Ag has been measured in the energy range of 1-60 eV using a back streaming white neutron beam line at China spallation neutron source. The resonance parameters are extracted by an R-matrix code. All the cross section of 107Ag and resonance parameters are given in this paper as datasets. The datasets are openly available at https://www.scidb.cn/s/aaUJbu.

2019 ◽  
Vol 97 (11) ◽  
pp. 1206-1209
Author(s):  
Ezgi Tantoğlu ◽  
Nalan Özkan ◽  
R. Taygun Güray

There are 35 proton-rich isotopes between 74Se and 196Hg that cannot be synthesized through neutron captures and β− decays (s- and r-processes). A third process is therefore required for the production of these nuclei, the so-called p-process. The abundance and the origin of the p-nuclei are still not fully understood even though significant experimental and theoretical efforts in astrophysical modeling have been expended in the last two decades. The experimental studies with the activation method to measure cross sections of the relevant reactions have some limitations: the reaction product must be radioactive, should have an appropriate half-life, and its decay should be followed by proper γ-radiations. If the cross section cannot be calculated with the radiation followed by the first beta decay of the product, it can be measured using the second beta decay as an alternative method. In this study, the method and candidate reactions for the cross-section measurements via the second beta decay of the reaction product using the activation method are discussed.


Author(s):  
Roberta Spartà ◽  
Giuseppe G. Rapisarda ◽  
Claudio Spitaleri ◽  
Marco La Cognata ◽  
Rosario G. Pizzone ◽  
...  

The Trojan Horse Method is an indirect method to measure reaction cross sections at energies of interest for nuclear astrophysics, exploiting the nuclei clustering properties. Here it is presented with its general features and detailed for the case of the ^22H(d,p)^33H and ^22H(d,n)^33He measurements, where interesting results for astrophysics and energy fusion power plants have been obtained.


2021 ◽  
Vol 247 ◽  
pp. 02039
Author(s):  
LI Zeguang ◽  
Jun Sun ◽  
Chunlin Wei ◽  
Zhe Sui ◽  
Xiaoye Qian

With the increasing needs of accurate simulation, the 3-D diffusion reactor physics module has been implemented in HTGR’s engineering simulator to give better neutron dynamics results instead of point kinetics model used in previous nuclear power plant simulators. As the requirement of real-time calculation of nuclear power plant simulator, the cross-sections used in 3-D diffusion module must be calculated very efficiently. Normally, each cross-section in simulator is calculated in the form of polynomial by function of several concerned variables, the expression of which was finalized by multivariate regression from large number scattered database generated by previous calculation. Since the polynomial is explicit and prepared in advance, the cross-sections could be calculated quickly enough in running simulator and achieve acceptable accuracy especially in LWR simulations. However, some of concerned variables in HTGR are in large scope and also the relationships of these variables are non-linear and very complex, it is very hard to use polynomial to meet full range accuracy. In this paper, a cross-section generating method used in HTGR simulator is proposed, which is based on machine learning methods, especially deep neuron network and tree regression methods. This method first uses deep neuron networks to consider the nonlinear relationships between different variables and then uses a tree regression to achieve accurate cross-section results in full range, the parameters of deep neuron networks and tree regression are learned automatically from the scattered database generated by VSOP. With the numerical tests, the proposed cross-section generating method could get more accurate cross-section results and the calculation time is acceptable by the simulator.


2009 ◽  
Vol 1 (2) ◽  
pp. 173-181 ◽  
Author(s):  
M. M. Haque ◽  
M. T. Islam ◽  
M. A. Hafiz ◽  
R. U. Miah ◽  
M. S. Uddin

The cross sections of Ge isotopes were measured with the activation method at 14.8 MeV neutron energy. The quasi-monoenergetic neutron beams were produced via the 3H(d,n)4He reaction at the 150 kV J-25 neutron generator of INST, AERE. The characteristics γ-lines of the product nuclei were measured with a closed end coaxial 17.5 cm2 high purity germanium (HPGe) detector gamma ray spectroscopy. The cross sections were determined with reference to the known 27Al(n,α)24Na reaction. Cross section data are presented for 72Ge(n,p)72Ga, 74Ge(n,α)71mZn and 76Ge(n,2n)75m+gGe reactions. The cross section values obtained for the above reactions were 24.78±1.75 mb, 1.69±0.11 mb and 860±50 mb, respectively. The results obtained were compared with the values reported in literature as well as theoretical calculation performed by the statistical code SINCROS-II. The experimental data were found fairly in good agreement with the calculated and literature data.  Keywords: Activation cross section; Neutron induced reaction; Gamma-ray spectroscopy; 14.8 MeV. © 2009 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved. DOI: 10.3329/jsr.v1i2.1532  


2021 ◽  
Author(s):  
Junhua Luo ◽  
Li Jiang ◽  
junchen liang ◽  
Fei Tuo ◽  
Long He ◽  
...  

Abstract The reaction cross-sections of 124Xe(n, 2n)123Xe, 126Xe(n, 2n)125Xe, 128Xe(n, 2n)127Xe, 130Xe(n, 2n)129mXe, 132Xe(n, 2n)131mXe, 130Xe(n, p)130I, 131Xe(n, p)131I, and 132Xe(n, p)132I were measured at the 13.5, 13.8, 14.1, 14.4, and 14.8 MeV neutron energies. The monoenergetic neutrons were generated through the 3H(d,n)4He reaction at the China Academy of Engineering Physics using the K-400 Neutron Generator with a solid 3H-Ti target. A high-purity germanium detector was used to measure the activities of the product. The reactions 93Nb(n, 2n)92mNb and 27Al(n, α)24Na served for neutron flux calibration. The cross sections of the (n,2n) and (n,p) reactions of the xenon isotopes were acquired within the 13–15 MeV neutron energy range. These cross-sections were then compared with the IAEA-exchange format (EXFOR) database-derived experimental data together with the evaluation results of the CENDL-3, ENDF/B-VIII.0, JENDL-4.0, RUSFOND, and JEFF-3.3 data libraries as well as the theoretical excitation function obtained using the TALYS-1.95 code. The cross-sections of the reactions (except for the 124Xe(n, 2n)123Xe and 132Xe(n, p)132I) at 13.5, 13.8, and 14.1 MeV are reported for the first time in this work. The present results are helpful to provide better cross-section constraints for these reactions in the 13–15 MeV region, thus improving the quality of the corresponding database. Meanwhile, these data can also be used for the verification of relevant nuclear reaction model parameters.


1972 ◽  
Vol 27 (6) ◽  
pp. 1015-1016 ◽  
Author(s):  
P. Holmberg

Abstract Cross section values for (n,p)-and (n,α)-reactions have been analysed as functions of the proton and neutron numbers of the target nuclei. When these numbers equal or approach those of a closed shell structure, the cross section values tend to increase. Far from closed shells the cross sections are small.


KnE Energy ◽  
2016 ◽  
Vol 1 (1) ◽  
Author(s):  
Syaiful Bakhri

<p class="NoSpacing1"><span lang="IN">The Rod Control System is </span>employed<span lang="IN"> to adjust the position of the control rods in the reactor core </span>which corresponds with <span lang="IN">the thermal power generated in the core </span>as well as <span lang="IN">the electric power generated in the turbine. In a Pressurized Water Reactor (PWR) type nuclear power plants, the control-rod drive </span>employs <span lang="IN">magnetic stepping-type mechanism. This </span>type of <span lang="IN">mechanism consists of a pair of circular coils and latch-style jack with the armature. When the </span>electric <span lang="IN">current </span>is <span lang="IN">supplied to the coils sequentially, the control-rods</span>, which <span lang="IN">are held on the drive shaft</span>, can be driven<span lang="IN"> up</span>ward<span lang="IN"> or down</span>ward<span lang="IN"> in increments. </span>This <span lang="IN">sequential current </span>c<span lang="IN">ontrol</span> drive<span lang="IN"> system is called the Control-Rod Drive Mechanism Control System (CRDMCS) or </span>known also as <span lang="IN">the Rod Control System (RCS). The p</span>urpose of this paper is to investigate the RCS reliability <span lang="IN">of APWR </span>using <span lang="IN">the Fault Tree Analysis (FTA)</span> method<span lang="IN"> since </span>the analysis of reliability which considers<span lang="IN"> the FTA</span> for common CRDM <span lang="IN">can </span>not <span lang="IN">be found</span> in <span lang="IN">any </span>public references. <span lang="IN">The FTA method is used to model the system reliability by developing the fault tree diagram of the system. </span>The<span lang="IN"> results show that the failure of the system is very dependent on the failure of most of the individual systems. However, the failure of the system does not affect the safety of the reactor, since the reactor trips immediately if the system fails. The evaluation results also indicate that the Distribution Panel is the most critical component in the system.</span></p>


Universe ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 4
Author(s):  
Chemseddine Ananna ◽  
Francesco Barile ◽  
Axel Boeltzig ◽  
Carlo Giulio Bruno ◽  
Francesca Cavanna ◽  
...  

Nuclear reaction cross sections are essential ingredients to predict the evolution of AGB stars and understand their impact on the chemical evolution of our Galaxy. Unfortunately, the cross sections of the reactions involved are often very small and challenging to measure in laboratories on Earth. In this context, major steps forward were made with the advent of underground nuclear astrophysics, pioneered by the Laboratory for Underground Nuclear Astrophysics (LUNA). The present paper reviews the contribution of LUNA to our understanding of the evolution of AGB stars and related nucleosynthesis.


2022 ◽  
Author(s):  
RATANKUMAR SINGH ◽  
N.L. Singh ◽  
Rakesh Chauhan ◽  
Mayur Mehta ◽  
Saraswatula suryanarayan ◽  
...  

Abstract The cross sections of the 121Sb(n,2n) 120Sbm and 123Sb(n,2n) 122Sb reactions were measured at 12.50, 15.79 and 18.87 MeV neutron energies relative to the standard 27Al(n,α) 24Na monitor reaction using neutron activation and offline γ-ray spectrometry technique. Irradiations of the samples were performed at the BARC-TIFR Pelletron Linac Facility, Mumbai, India. The quasi-monoenergetic neutron was generated via the 7Li(p,n) reaction. Statistical model calculations were performed by nuclear reaction codes TALYS (ver. 1.9) and EMPIRE (ver. 3.2.2) using various input parameters and nuclear level density models. The cross sections of the ground and the isomeric state as well as the isomeric cross section ratio were studied theoretically from reaction threshold to 26 MeV energies. The effect of pre-equilibrium emission is also discussed in detail using different theoretical models. The present measured cross section were discussed and compared with reported experimental data and evaluation data of the JEFF-3.3, ENDF/B-VIII.0, JENDL/AD-2017 and TENDL-2019 libraries. A detailed analysis of the uncertainties in the measured cross section data was performed using the covariance analysis method. Furthermore, a systematic study of the (n,2n) reaction cross section for 121Sb and 123Sb isotopes were also performed within 14-15 MeV neutron energies using various systematic formulae. This work helps to overcome discrepancies in Sb data and illustrate a better understanding of pre-equilibrium emission in (n,2n) reaction channel.


The work of multilayer glass structures for central and eccentric compression and bending are considered. The substantiation of the chosen research topic is made. The description and features of laminated glass for the structures investigated, their characteristics are presented. The analysis of the results obtained when testing for compression, compression with bending, simple bending of models of columns, beams, samples of laminated glass was made. Overview of the types and nature of destruction of the models are presented, diagrams of material operation are constructed, average values of the resistance of the cross-sections of samples are obtained, the table of destructive loads is generated. The need for development of a set of rules and guidelines for the design of glass structures, including laminated glass, for bearing elements, as well as standards for testing, rules for assessing the strength, stiffness, crack resistance and methods for determining the strength of control samples is emphasized. It is established that the strength properties of glass depend on the type of applied load and vary widely, and significantly lower than the corresponding normative values of the strength of heat-strengthened glass. The effect of the connecting polymeric material and manufacturing technology of laminated glass on the strength of the structure is also shown. The experimental values of the elastic modulus are different in different directions of the cross section and in the direction perpendicular to the glass layers are two times less than along the glass layers.


Sign in / Sign up

Export Citation Format

Share Document