Low-cost and easy-fabrication lightweight drivable electrode array for multiple-regions electrophysiological recording in free-moving mice

Author(s):  
Chongyang Sun ◽  
Yi Cao ◽  
Jianyu Huang ◽  
Kang Huang ◽  
Yi Lu ◽  
...  

Abstract Objective. Extracellular electrophysiology has been widely applied to neural circuit dissections. However, long-term multiregional recording in free-moving mice remains a challenge. Low-cost and easy-fabrication of elaborate drivable electrodes is required for their prevalence. Approach. A three-layer nested construct (OD ~1.80 mm, length ~10 mm, <0.1g) was recruited as a drivable component, which consisted of an ethylene-vinyl acetate copolymer (EVA) heat-shrinkable tube, non-closed loop ceramic bushing, and stainless ferrule with a bulge twining silver wire. The supporting and working components were equipped with drivable components to be assembled into a drivable microwire electrode array with a nested structure (drivable MEANS). Two drivable microwire electrode arrays were independently implanted for chronic recording in different brain areas at respective angles. An optic fiber was easily loaded into the drivable MEANS to achieve optogenetic modulation and electrophysiological recording simultaneously. Main results. The drivable MEANS had lightweight (~ 0.37 g), small (~ 15 mm ×15 mm × 4 mm), and low cost (≤ $64.62). Two drivable MEANS were simultaneously implanted in mice, and high-quality electrophysiological recordings could be applied ≥ 5 months after implantation in freely behaving animals. Electrophysiological recordings and analysis of the lateral septum (LS) and lateral hypothalamus (LH) in food-seeking behavior demonstrated that our drivable MEANS can be used to dissect the function of neural circuits. An optical fiber-integrated drivable MEANS (~ 0.47 g) was used to stimulate and record LS neurons, which suggested that changes in working components can achieve more functions than electrophysiological recordings, such as optical stimulation, drug release, and calcium imaging. Significance. Drivable MEANS is an easily fabricated, lightweight drivable microwire electrode array for multiple-region electrophysiological recording in free-moving mice. Our design is likely to be a valuable platform for both current and prospective users, as well as for developers of multifunctional electrodes for free-moving mice.

2020 ◽  
Author(s):  
Hoseok Kim ◽  
Hans Sperup Brünner ◽  
Marie Carlén

AbstractElectrophysiological recording and optogenetic control of neuronal activity in behaving animals have been integral to the elucidation of how neurons and circuits modulate network activity in the encoding and causation of behavior. However, most current electrophysiological methods require substantial economical investments and prior expertise. Further, the inclusion of optogenetics with electrophysiological recordings in freely moving animals remains a general challenge. Expansion of the technological repertoire across laboratories, research institutes, and countries, demands open access to high-quality devices that can be built with little or no prior expertise from easily accessible parts of low cost. We here present a very affordable, truly easy-to-assemble micro-drive for electrophysiology in combination with optogenetics in freely moving mice and rats. The DMCdrive is particularly suited for reliable long-term recordings of neurons and network activities, and simplify optical tagging and manipulation of neurons in the recorded brain region. The highly functional and practical drive design has been optimized for accurate tetrode movement in brain tissue, and remarkably reduced build time. We provide a complete overview of the drive design, its assembly and use, and proof-of-principle demonstration of long-term recordings paired with cell-type-specific optogenetic manipulations in the prefrontal cortex (PFC) of freely moving transgenic mice and rats.


Proceedings ◽  
2020 ◽  
Vol 60 (1) ◽  
pp. 51
Author(s):  
Tala Ahmadvand ◽  
Sara Mirsadeghi ◽  
Faezeh Shanehsazzadeh ◽  
Sahar Kiani ◽  
Mehdi Fardmanesh

In this paper, a fabrication method for two-dimensional multi-electrode arrays (MEAs) using inexpensive material and method is proposed. The focus in this work is on the design and fabrication of 2D Microelectrode arrays using metallic electrodes on a silica substrate. Titanium/gold multi-electrode arrays containing 60 electrodes with optimized metal thicknesses and 30 μm diameter, covered with thin modified SU-8 insulator layer as biocompatible material have been designed and manufactured using the standard photolithography-based microfabrication method. The utilization of affordable and more accessible materials and simpler techniques can be mentioned as the distinct point of the proposed fabrication method. Using these multi-electrode arrays, it is possible to either record or stimulate cells by accessing multiple sites of cell tissues and collect signals from the sources around each electrode simultaneously. Precisely adjusting the size, distance, and number of microelectrodes causes high measurement selectivity and reliability which has been taken into account in the design of the microelectrodes. In this study, we manufactured a preliminary representative MEA and the bio-compatibility of the manufactured MEA is going to be evaluated by neural cells, obtained from rat cortices. The main aim of this study is to compare our inexpensive strategy with other approaches.


2018 ◽  
Vol 115 (46) ◽  
pp. 11718-11723 ◽  
Author(s):  
Yuxin Liu ◽  
Allister F. McGuire ◽  
Hsin-Ya Lou ◽  
Thomas L. Li ◽  
Jeffrey B.-H. Tok ◽  
...  

Multielectrode arrays (MEAs) are essential tools in neural and cardiac research as they provide a means for noninvasive, multiplexed recording of extracellular field potentials with high temporal resolution. To date, the mechanical properties of the electrode material, e.g., its Young’s modulus, have not been taken into consideration in most MEA designs leaving hard materials as the default choice due to their established fabrication processes. However, the cell–electrode interface is known to significantly affect some aspects of the cell’s behavior. In this paper, we describe the fabrication of a soft 3D micropillar electrode array. Using this array, we proceed to successfully record action potentials from monolayer cell cultures. Specifically, our conductive hydrogel micropillar electrode showed improved signal amplitude and signal-to-noise ratio, compared with conventional hard iridium oxide micropillar electrodes of the same diameter. Taken together, our fabricated soft micropillar electrode array will provide a tissue-like Young’s modulus and thus a relevant mechanical microenvironment to fundamental cardiac and neural studies.


2021 ◽  
Vol 11 (9) ◽  
pp. 4144
Author(s):  
Ohad Cohen ◽  
Jean-Yves Sichel ◽  
Chanan Shaul ◽  
Itay Chen ◽  
J. Thomas Roland ◽  
...  

Although malpositioning of the cochlear implant (CI) electrode array is rare in patients with normal anatomy, when occurring it may result in reduced hearing outcome. In addition to intraoperative electrophysiologic tests, imaging is an important modality to assess correct electrode array placement. The purpose of this report was to assess the incidence and describe cases in which intraoperative plain radiographs detected a malpositioned array. Intraoperative anti-Stenver’s view plain X-rays are conducted routinely in all CI surgeries in our tertiary center before awakening the patient and breaking the sterile field. Data of patients undergoing 399 CI surgeries were retrospectively analyzed. A total of 355 had normal inner ear and temporal bone anatomy. Patients with intra or extracochlear malpositioned electrode arrays demonstrated in the intraoperative X-ray were described. There were four cases of electrode array malposition out of 355 implantations with normal anatomy (1.1%): two tip fold-overs, one extracochlear placement and one partial insertion. All electrodes were reinserted immediately; repeated radiographs were normal and the patients achieved good hearing function. Intraoperative plain anti-Stenver’s view X-rays are valuable to confirm electrode array location, allowing correction before the conclusion of surgery. These radiographs are cheaper, faster, and emit much less radiation than other imaging options, making them a viable cost-effective tool in patients with normal anatomy.


2007 ◽  
Vol 97 (5) ◽  
pp. 3781-3789 ◽  
Author(s):  
Ian Nauhaus ◽  
Dario L. Ringach

Recent theoretical models of primary visual cortex predict a relationship between receptive field properties and the location of the neuron within the orientation maps. Testing these predictions requires the development of new methods that allow the recording of single units at various locations across the orientation map. Here we present a novel technique for the precise alignment of functional maps and array recordings. Our strategy consists of first measuring the orientation maps in V1 using intrinsic optical imaging. A micromachined electrode array is subsequently implanted in the same patch of cortex for electrophysiological recordings, including the measurement of orientation tuning curves. The location of the array within the map is obtained by finding the position that maximizes the agreement between the preferred orientations measured electrically and optically. Experimental results of the alignment procedure from two implementations in monkey V1 are presented. The estimated accuracy of the procedure is evaluated using computer simulations. The methodology should prove useful in studying how signals from the local neighborhood of a neuron, thought to provide a dominant feedback signal, shape the receptive field properties in V1.


2021 ◽  
Vol 118 (45) ◽  
pp. e2110817118
Author(s):  
Dengning Xia ◽  
Rui Jin ◽  
Gaurav Byagathvalli ◽  
Huan Yu ◽  
Ling Ye ◽  
...  

Vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other pathogens with pandemic potential requires safe, protective, inexpensive, and easily accessible vaccines that can be developed and manufactured rapidly at a large scale. DNA vaccines can achieve these criteria, but induction of strong immune responses has often required bulky, expensive electroporation devices. Here, we report an ultra-low-cost (<1 USD), handheld (<50 g) electroporation system utilizing a microneedle electrode array (“ePatch”) for DNA vaccination against SARS-CoV-2. The low cost and small size are achieved by combining a thumb-operated piezoelectric pulser derived from a common household stove lighter that emits microsecond, bipolar, oscillatory electric pulses and a microneedle electrode array that targets delivery of high electric field strength pulses to the skin’s epidermis. Antibody responses against SARS-CoV-2 induced by this electroporation system in mice were strong and enabled at least 10-fold dose sparing compared to conventional intramuscular or intradermal injection of the DNA vaccine. Vaccination was well tolerated with mild, transient effects on the skin. This ePatch system is easily portable, without any battery or other power source supply, offering an attractive, inexpensive approach for rapid and accessible DNA vaccination to combat COVID-19, as well as other epidemics.


2002 ◽  
Vol 24 (4) ◽  
pp. 105-110 ◽  
Author(s):  
Jarbas J. R. Rohwedder ◽  
Celio Pasquini ◽  
Ivo M. Raimundo, Jr. ◽  
M. Conceiçao ◽  
B. S. M. Montenegro ◽  
...  

A versatile potentiometer that works with electrode arrays in flow injection and/or monosegmented flow systems is described. The potentiometer is controlled by a microcomputer that allows individual, sequential multiplexed or random accesses to eight electrodes while employing only one reference electrode. The instrument was demonstrated by monitoring an array of seven flow-through ion-selective electrodes for Ag+and for three electrodes for Cl-, Ca2+and K+. The figures of merit of the individual and multiplexed (summed) readings of the electrode array were compared. The absolute standard deviation of the measurements made by summing the potential of two or more electrodes was maintained constant, thus improving the precision of the measurements. This result shows that an attempt to combine the signals of the electrodes to produce a more intense signal in the Hadamard strategy is feasible and accompanied by a proportional improvement in the precision of individual measurements. The preliminary tests suggest that the system can allow for 270 determinations per hour, with a linear range from1.0×10−2to1.0×10−4mol l-1for the three di¡erent analytes. Detection limits were estimated as3.1×10−5,3.0×10−6and1.0×10−5mol l-1for Cl-, Ca2+and K+, respectively.


BioTechniques ◽  
2008 ◽  
Vol 45 (4) ◽  
pp. 451-456 ◽  
Author(s):  
Michael Serra ◽  
Amy Chan ◽  
Maya Dubey ◽  
Thomas B. Shea

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Jonathan I. Benichov ◽  
Daniela Vallentin

AbstractVocal turn-taking is a fundamental organizing principle of human conversation but the neural circuit mechanisms that structure coordinated vocal interactions are unknown. The ability to exchange vocalizations in an alternating fashion is also exhibited by other species, including zebra finches. With a combination of behavioral testing, electrophysiological recordings, and pharmacological manipulations we demonstrate that activity within a cortical premotor nucleus orchestrates the timing of calls in socially interacting zebra finches. Within this circuit, local inhibition precedes premotor neuron activation associated with calling. Blocking inhibition results in faster vocal responses as well as an impaired ability to flexibly avoid overlapping with a partner. These results support a working model in which premotor inhibition regulates context-dependent timing of vocalizations and enables the precise interleaving of vocal signals during turn-taking.


HardwareX ◽  
2020 ◽  
Vol 8 ◽  
pp. e00132
Author(s):  
Leandro A.A. Aguiar ◽  
Nivaldo A P de Vasconcelos ◽  
Gabriela Chiuffa Tunes ◽  
Antonio J. Fontenele ◽  
Romildo de Albuquerque Nogueira ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document