scholarly journals Soft conductive micropillar electrode arrays for biologically relevant electrophysiological recording

2018 ◽  
Vol 115 (46) ◽  
pp. 11718-11723 ◽  
Author(s):  
Yuxin Liu ◽  
Allister F. McGuire ◽  
Hsin-Ya Lou ◽  
Thomas L. Li ◽  
Jeffrey B.-H. Tok ◽  
...  

Multielectrode arrays (MEAs) are essential tools in neural and cardiac research as they provide a means for noninvasive, multiplexed recording of extracellular field potentials with high temporal resolution. To date, the mechanical properties of the electrode material, e.g., its Young’s modulus, have not been taken into consideration in most MEA designs leaving hard materials as the default choice due to their established fabrication processes. However, the cell–electrode interface is known to significantly affect some aspects of the cell’s behavior. In this paper, we describe the fabrication of a soft 3D micropillar electrode array. Using this array, we proceed to successfully record action potentials from monolayer cell cultures. Specifically, our conductive hydrogel micropillar electrode showed improved signal amplitude and signal-to-noise ratio, compared with conventional hard iridium oxide micropillar electrodes of the same diameter. Taken together, our fabricated soft micropillar electrode array will provide a tissue-like Young’s modulus and thus a relevant mechanical microenvironment to fundamental cardiac and neural studies.

Author(s):  
Chongyang Sun ◽  
Yi Cao ◽  
Jianyu Huang ◽  
Kang Huang ◽  
Yi Lu ◽  
...  

Abstract Objective. Extracellular electrophysiology has been widely applied to neural circuit dissections. However, long-term multiregional recording in free-moving mice remains a challenge. Low-cost and easy-fabrication of elaborate drivable electrodes is required for their prevalence. Approach. A three-layer nested construct (OD ~1.80 mm, length ~10 mm, <0.1g) was recruited as a drivable component, which consisted of an ethylene-vinyl acetate copolymer (EVA) heat-shrinkable tube, non-closed loop ceramic bushing, and stainless ferrule with a bulge twining silver wire. The supporting and working components were equipped with drivable components to be assembled into a drivable microwire electrode array with a nested structure (drivable MEANS). Two drivable microwire electrode arrays were independently implanted for chronic recording in different brain areas at respective angles. An optic fiber was easily loaded into the drivable MEANS to achieve optogenetic modulation and electrophysiological recording simultaneously. Main results. The drivable MEANS had lightweight (~ 0.37 g), small (~ 15 mm ×15 mm × 4 mm), and low cost (≤ $64.62). Two drivable MEANS were simultaneously implanted in mice, and high-quality electrophysiological recordings could be applied ≥ 5 months after implantation in freely behaving animals. Electrophysiological recordings and analysis of the lateral septum (LS) and lateral hypothalamus (LH) in food-seeking behavior demonstrated that our drivable MEANS can be used to dissect the function of neural circuits. An optical fiber-integrated drivable MEANS (~ 0.47 g) was used to stimulate and record LS neurons, which suggested that changes in working components can achieve more functions than electrophysiological recordings, such as optical stimulation, drug release, and calcium imaging. Significance. Drivable MEANS is an easily fabricated, lightweight drivable microwire electrode array for multiple-region electrophysiological recording in free-moving mice. Our design is likely to be a valuable platform for both current and prospective users, as well as for developers of multifunctional electrodes for free-moving mice.


2016 ◽  
Vol 21 (4) ◽  
pp. 261-267 ◽  
Author(s):  
Daniele De Seta ◽  
Yann Nguyen ◽  
Antoine Vanier ◽  
Evelyne Ferrary ◽  
Jean-Pierre Bebear ◽  
...  

Objective: To report the speech performance and sound localization in adult patients 5 years after bilateral simultaneous cochlear implantation and to evaluate the change in speech scores between 1 and 5 years. Design: In this prospective multicenter study, 26 patients were evaluated 5 years after implantation using long straight electrode arrays (MED-EL Combi 40+, standard electrode array, 31 mm). Speech perception was measured using disyllabic words in quiet and noise, with the speech coming from the front and a cocktail party background noise coming from 5 loudspeakers. Speech localization measurements were performed in noise under the same test conditions. These results were compared to those obtained at 1 year reported in a previous study. Results: Five years after implantation, an improvement in speech performance scores compared to 1 year after implantation was found for the poorer ear both in quiet and in noise (+12.1 ± 2.6%, p < 0.001). The lower the speech score of the poorer ear at 1 year, the greater the improvement at 5 years, both in quiet (r = -0.62) and at a signal-to-noise ratio of +15 dB (r = -0.58). The sound localization on the horizontal plane in noise provided by bilateral implantation was better than the unilateral one and remained stable after the results observed at 1 year. Conclusion: In adult patients simultaneously and bilaterally implanted, the poorest speech scores improved between 1 and 5 years after implantation. These findings are an additional element to recommend bilateral implantation in adult patients. The use of both cochlear implants and speech training sessions for patients with poor performance should continue in the period after 1 year following implantation, since the speech scores will improve over time.


2019 ◽  
Vol 107 (2) ◽  
pp. 207 ◽  
Author(s):  
Jaroslav Čech ◽  
Petr Haušild ◽  
Miroslav Karlík ◽  
Veronika Kadlecová ◽  
Jiří Čapek ◽  
...  

FeAl20Si20 (wt.%) powders prepared by mechanical alloying from different initial feedstock materials (Fe, Al, Si, FeAl27) were investigated in this study. Scanning electron microscopy, X-ray diffraction and nanoindentation techniques were used to analyze microstructure, phase composition and mechanical properties (hardness and Young’s modulus). Finite element model was developed to account for the decrease in measured values of mechanical properties of powder particles with increasing penetration depth caused by surrounding soft resin used for embedding powder particles. Progressive homogenization of the powders’ microstructure and an increase of hardness and Young’s modulus with milling time were observed and the time for complete homogenization was estimated.


1981 ◽  
Vol 6 ◽  
Author(s):  
J.R. Mclaren ◽  
R.W. Davidge ◽  
I. Titchell ◽  
K. Sincock ◽  
A. Bromley

ABSTRACTHeating to temperatures up to 500°C, gives a reduction in Young's modulus and increase in permeability of granitic rocks and it is likely that a major reason is grain boundary cracking. The cracking of grain boundary facets in polycrystalline multiphase materials showing anisotropic thermal expansion behaviour is controlled by several microstructural factors in addition to the intrinsic thermal and elastic properties. Of specific interest are the relative orientations of the two grains meeting at the facet, and the size of the facet; these factors thus introduce two statistical aspects to the problem and these are introduced to give quantitative data on crack density versus temperature. The theory is compared with experimental measurements of Young's modulus and permeability for various rocks as a function of temperature. There is good qualitative agreement, and the additional (mainly microstructural) data required for a quantitative comparison are defined.


2020 ◽  
Vol 12 ◽  
Author(s):  
S.V. Kontomaris ◽  
A. Malamou ◽  
A. Stylianou

Background: The determination of the mechanical properties of biological samples using Atomic Force Microscopy (AFM) at the nanoscale is usually performed using basic models arising from the contact mechanics theory. In particular, the Hertz model is the most frequently used theoretical tool for data processing. However, the Hertz model requires several assumptions such as homogeneous and isotropic samples and indenters with perfectly spherical or conical shapes. As it is widely known, none of these requirements are 100 % fulfilled for the case of indentation experiments at the nanoscale. As a result, significant errors arise in the Young’s modulus calculation. At the same time, an analytical model that could account complexities of soft biomaterials, such as nonlinear behavior, anisotropy, and heterogeneity, may be far-reaching. In addition, this hypothetical model would be ‘too difficult’ to be applied in real clinical activities since it would require very heavy workload and highly specialized personnel. Objective: In this paper a simple solution is provided to the aforementioned dead-end. A new approach is introduced in order to provide a simple and accurate method for the mechanical characterization at the nanoscale. Method: The ratio of the work done by the indenter on the sample of interest to the work done by the indenter on a reference sample is introduced as a new physical quantity that does not require homogeneous, isotropic samples or perfect indenters. Results: The proposed approach, not only provides an accurate solution from a physical perspective but also a simpler solution which does not require activities such as the determination of the cantilever’s spring constant and the dimensions of the AFM tip. Conclusion: The proposed, by this opinion paper, solution aims to provide a significant opportunity to overcome the existing limitations provided by Hertzian mechanics and apply AFM techniques in real clinical activities.


2011 ◽  
Vol 695 ◽  
pp. 170-173 ◽  
Author(s):  
Voravadee Suchaiya ◽  
Duangdao Aht-Ong

This work focused on the preparation of the biocomposite films of polylactic acid (PLA) reinforced with microcrystalline cellulose (MCC) prepared from agricultural waste, banana stem fiber, and commercial microcrystalline cellulose, Avicel PH 101. Banana stem microcrystalline cellulose (BS MCC) was prepared by three steps, delignification, bleaching, and acid hydrolysis. PLA and two types of MCC were processed using twin screw extruder and fabricated into film by a compression molding. The mechanical and crystalline behaviors of the biocomopsite films were investigated as a function of type and amount of MCC. The tensile strength and Young’s modulus of PLA composites were increased when concentration of MCC increased. Particularly, banana stem (BS MCC) can enhance tensile strength and Young’s modulus of PLA composites than the commercial MCC (Avicel PH 101) because BS MCC had better dispersion in PLA matrix than Avicel PH 101. This result was confirmed by SEM image of fractured surface of PLA composites. In addition, XRD patterns of BS MCC/PLA composites exhibited higher crystalline peak than that of Avicel PH 101/PLA composites


Coatings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 153
Author(s):  
Chuen-Lin Tien ◽  
Tsai-Wei Lin

This paper proposes a measuring apparatus and method for simultaneous determination of the thermal expansion coefficient and biaxial Young’s modulus of indium tin oxide (ITO) thin films. ITO thin films simultaneously coated on N-BK7 and S-TIM35 glass substrates were prepared by direct current (DC) magnetron sputtering deposition. The thermo-mechanical parameters of ITO thin films were investigated experimentally. Thermal stress in sputtered ITO films was evaluated by an improved Twyman–Green interferometer associated with wavelet transform at different temperatures. When the heating temperature increased from 30 °C to 100 °C, the tensile thermal stress of ITO thin films increased. The increase in substrate temperature led to the decrease of total residual stress deposited on two glass substrates. A linear relationship between the thermal stress and substrate heating temperature was found. The thermal expansion coefficient and biaxial Young’s modulus of the films were measured by the double substrate method. The results show that the out of plane thermal expansion coefficient and biaxial Young’s modulus of the ITO film were 5.81 × 10−6 °C−1 and 475 GPa.


2021 ◽  
Vol 54 (3) ◽  
pp. 1149-1149
Author(s):  
Zhibo Duan ◽  
Frédéric Skoczylas ◽  
Chuanrui Wang ◽  
Jean Talandier

Sign in / Sign up

Export Citation Format

Share Document