Modelling of sawtooth-induced fast ion transport in positive and negative triangularity in TCV

2021 ◽  
Author(s):  
Matteo Vallar ◽  
Mario Podesta ◽  
Marcelo Baquero-Ruiz ◽  
Phillip Bonofiglo ◽  
Basil P Duval ◽  
...  

Abstract Internal kinks are a common magneto hydro-dynamic (MHD) instability observed in tokamak operation when the q profile in the plasma core is close to unity. This MHD instability impacts both the transport of the bulk plasma (current, particle and energy transport) and minority species, such as fast ions. In TCV (R 0 /a = 0.88 m/0.25 m) the fast ion population is generated in the plasma by neutral beam tangential injection of energies up to 28 keV. TCV features 16 active shaping coils permitting a great flexibility in plasma shape, including negative triangularity (δ) configurations that show surprisingly high confinement. This study focuses on the transport of fast ions induced by sawteeth, by comparing two triangularity cases and simulation results with experimental data. Comparison of two equilibria with opposite δ shows that the fast ion drifts are larger for δ < 0. Furthermore, the sawtooth-induced transport in this case is larger than δ > 0 in similar conditions. Comparison with experimental data confirms the dominance of the modification of thermal kinetic profiles following the sawtooth crash in explaining drops in the neutron rates and FIDA signals. Additional fast ion diffusion, however, improves the interpretation of the experimental data. For δ < 0, the amplitude of the perturbation better representing the experimental data is larger. Finaly, an exploratory study for 50 keV particles (soon available in TCV) shows that the situation does not worsen for such particles.

2009 ◽  
Vol 4 ◽  
pp. 033-033 ◽  
Author(s):  
Kunihiro OGAWA ◽  
Mitsutaka ISOBE ◽  
Kazuo TOI ◽  
LHD Experiment Group

1968 ◽  
Vol 46 (6) ◽  
pp. 503-516 ◽  
Author(s):  
D. V. Morgan ◽  
D. van Vliet

A computer program has been developed which follows the trajectories of fast ions in crystals, based on the assumption of classical dynamics and binary collisions. Initial work has been directed at various aspects of proton channeling in copper in the energy range 5–500 keV. The critical angle and distance of closest approach in a perfect lattice have been evaluated for both rows and planes and compare well with the predictions of the continuum model as developed by Lindhard (1965). We also discuss the overlap of close-packed rows and planes, and the modifications necessary to the basic theory when thermal vibrations are introduced. Experiments have been simulated directly by obtaining a statistical analysis of the velocity distribution of protons reflected from a (100) face of copper and transmitted through a thin (~1800 Â) crystal. In reflection, distinct minima were obtained along directions corresponding to close-packed rows and planes, in good agreement with experimental "blocking patterns" (Nelson 1967a). Transmission patterns also revealed a lack of large-angle scattering parallel to close-packed planes, analogous to the white arms observed experimentally with thinner crystals.


2021 ◽  
Author(s):  
Yang Zhang ◽  
Yakun Tang ◽  
Lang Liu ◽  
Yue Zhang ◽  
Zhiguo Li

T-Nb2O5/CNT nanohybrid with short transmission path, rich active sites, and favorable mechanical flexibility can achieve the fast transportation of ions/electrons. The obtained nanohybrid with continuous conductive network exhibit better lithium...


RSC Advances ◽  
2017 ◽  
Vol 7 (67) ◽  
pp. 42083-42087 ◽  
Author(s):  
Zhao Min Sheng ◽  
Xin Jian Chang ◽  
Yu Hang Chen ◽  
Cheng Yang Hong ◽  
Na Na Li ◽  
...  

Removal of the N-doped template creates nanopores in the shells of nanocages. The created nanopores enhance fast ion diffusion.


2015 ◽  
Vol 3 (27) ◽  
pp. 14445-14457 ◽  
Author(s):  
Jianyun Cao ◽  
Yaming Wang ◽  
Junchen Chen ◽  
Xiaohong Li ◽  
Frank C. Walsh ◽  
...  

The 3D interconnected structure of the GO/PPy composite ensures fast ion diffusion through the electrode, leading to excellent supercapacitor performance.


2020 ◽  
Vol 11 (29) ◽  
pp. 7665-7671 ◽  
Author(s):  
Zhiyong Wang ◽  
Gang Wang ◽  
Haoyuan Qi ◽  
Mao Wang ◽  
Mingchao Wang ◽  
...  

Ultrathin and large-sized 2D conjugated MOF single-crystalline nanosheets are synthesized, which allow fast ion diffusion and high utilization of active sites, and therefore exhibit remarkable performance for Li-ion batteries.


2020 ◽  
Vol MA2020-01 (7) ◽  
pp. 715-715
Author(s):  
Steven F. Buchsbaum ◽  
Melinda L. Jue ◽  
Chiatai Chen ◽  
Eric R. Meshot ◽  
Sei Jin Park ◽  
...  

Volume 4 ◽  
2004 ◽  
Author(s):  
Robert J. Stevens ◽  
Pamela M. Norris ◽  
Arthur W. Lichtenberger

Understanding thermal boundary resistance (TBR) is becoming increasingly important for the thermal management of micro and optoelectronic devices. The current understanding of room temperature TBR is often not adequate for the thermal design of tomorrow’s complex micro and nano devices. Theories have been developed to explain the resistance to energy transport by phonons across interfaces. The acoustic mismatch model (AMM) [1, 2], which has had success at explaining low temperature TBR, does not account for the high frequency phonons and imperfect interfaces of real devices at room temperature. The diffuse mismatch model (DMM) was developed to account for real surfaces with higher energy phonons [3, 4]. DMM assumes that all phonons incident on the interface from both sides are elastically scattered and then emitted to either side of the interface. The probability that a phonon is emitted to a particular side is proportional to the phonon density of states of the two interface materials. Inherent to the DMM is that the transport is independent of the interface structure itself and is only dependent on the properties of the two materials. Recent works have shown that the DMM does not adequately capture all the energy transport mechanisms at the interface [5, 6]. In particular, the DMM under-predicts transport across interfaces between non Debye-like materials, such at Pb and diamond, by approximately an order of magnitude. The DMM also tends to over-predict transport for interfaces made with materials of similar acoustic properties, Debye-like materials. There have been several explanations and models developed to explain the discrepancies between the mismatch models and experimental data. Some of these models are based on modification of the AMM and DMM [7–9]. Other works have utilized lattice-dynamical modeling to calculate phonon transmission coefficients and thermal boundary conductivities for abrupt and disordered interfaces [3, 6, 10–13]. Recent efforts to better understand room temperature TBR have utilized molecular dynamics simulations to account for more realistic anharmonic materials and inelastic scattering [14–18]. Models have also been developed to account for electron-phonon scattering and its effect on the thermal boundary conductance for interfaces with one metal side [19–22]. Although there have been numerous thermal boundary resistance theoretical developments since the introduction of the AMM, there still is not an unifying theory that has been well validated for high temperature solid-solid interfaces. Most of the models attempt to explain some of the experimental outliers, such as Pb/diamond and TiN/MgO interfaces [6, 23], but have not been fully tested for a range of experimental data. Part of the problem lies in the fact that very little reliable data is available, especially data that is systematically taken to validate a particular model. To this end, preliminary measurements of TBR are being made on a series of metal on non-metal substrate interfaces using a non-destructive optical technique, transient thermal reflectance (TTR) described in Stevens et al. [5]. Initial testing examines the impact of different substrate preparation and deposition conditions on TBR for Debye-like interfaces for which TBR should be small for clean and abrupt interfaces. Variables considered include sputter etching power and duration, electron beam source clean, and substrate temperature control. The impact of alloying and non-abrupt interfaces on the TBR is examined by fabricating interfaces of both Debye-like and non Debye-like interfaces followed by systematically measuring TBR and altering the interfaces by annealing the samples to increase the diffusion depths at the interfaces. Inelastic electron scattering at the interface has been proposed by Hubermann et al. and Sergeev to decrease TBR at interfaces [19–21]. Two sets of samples are prepared to examine the electron-phonon connection to improved thermal boundary conductance. The first consists of thin Pt and Ag films on Si and sapphire substrates. Pt and Ag electron-phonon coupling factors are 60 and 3.1×1016 W/m3K respectively. Both Pt and Ag have similar Debye temperatures, so electron scattering rates can be examined without much change in acoustic effects. The second electron scattering sample series consist of multiple interfaces fabricated with Ni, Ge, and Si to separate the phonon and electron portions of thermal transport. The experimental data is compared to several of the proposed theories.


2019 ◽  
Vol 90 (7) ◽  
pp. 073504
Author(s):  
C. M. Muscatello ◽  
W. W. Heidbrink ◽  
R. L. Boivin ◽  
C. Chrystal ◽  
C. S. Collins ◽  
...  

Chem ◽  
2019 ◽  
Vol 5 (1) ◽  
pp. 168-179 ◽  
Author(s):  
Yun-Hai Zhu ◽  
Qi Zhang ◽  
Xu Yang ◽  
En-Yue Zhao ◽  
Tao Sun ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document