scholarly journals Optimum Angle of Inclination for a Fixed Stand-Alone Photovoltaic: A Review

2019 ◽  
Vol 1299 ◽  
pp. 012021
Author(s):  
W. A Ayara ◽  
F.G Akinboro ◽  
M. R Usikalu ◽  
K. D Oyeyemi ◽  
H. Orovwode
Keyword(s):  
1986 ◽  
Vol 14 (1) ◽  
pp. 3-32 ◽  
Author(s):  
P. Popper ◽  
C. Miller ◽  
D. L. Filkin ◽  
W. J. Schaffers

Abstract A mathematical analysis of radial tire cornering was performed to predict tire deflections and belt-edge separation strains. The model includes the effects of pure bending, transverse shear bending, lateral restraint of the carcass on the belt, and shear displacements between belt and carcass. It also provides a description of the key mechanisms that act during cornering. The inputs include belt and carcass cord properties, cord angle, pressure, rubber properties, and cornering force. Outputs include cornering deflections and interlaminar shear strains. Key relations found between tire parameters and responses were the optimum angle for minimum cornering deflections and its dependence on cord modulus, and the effect of cord angle and modulus on interlaminar shear strains.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Seyedeh Samaneh Golzan ◽  
Mina Pouyanmehr ◽  
Hassan Sadeghi Naeini

PurposeThe modular dynamic façade (MDF) concept could be an approach in a comfort-centric design through proper integration with energy-efficient buildings. This study focuses on obtaining and/or calculating an efficient angle of the MDF, which would lead to the optimum performance in daylight availability and energy consumption in a single south-faced official space located in the hot-arid climate of Yazd, Iran.Design/methodology/approachThe methodology consists of three fundamental parts: (1) based on previous related studies, a diamond-based dynamic skin façade was applied to a south-faced office building in a hot-arid climate; (2) the daylighting and energy performance of the model were simulated annually; and (3) the data obtained from the simulation were compared to reach the optimum angle of the MDF.FindingsThe results showed that when the angle of the MDF openings was set at 30°, it could decrease energy consumption by 41.32% annually, while daylight simulation pointed that the space experienced the minimum possible glare at this angle. Therefore, the angle of 30° was established as the optimum angle, which could be the basis for future investment in responsive building envelopes.Originality/valueThis angular study simultaneously assesses the daylight availability, visual comfort and energy consumption on a MDF in a hot-arid climate.


2015 ◽  
Vol 19 (5) ◽  
pp. 1663-1671 ◽  
Author(s):  
Bihter Arabacigil ◽  
Numan Yuksel ◽  
Atakan Avci

In this paper, the potential use and effectiveness of paraffin wax in a new solar cooker was experimentally investigated during daylight and late evening hours. For these experiments, a cooker having an inner reflecting surface was designed, constructed by filling paraffin wax and metal shavings. The side- and sub-surface temperatures of the paraffin wax in the cooker are measured in the summer months of June and July. The thermal efficiency of the cooker was tested on different conditions. The results show that the optimum angle of the outer reflector is 30?. Here, the peak temperature of the paraffin wax in the solar cooker was 83.4 ?C. The average solar radiation reflected makes a contribution of 9.26% to the temperature of paraffin wax with the outer reflector. The solar cooker with the outer reflector angle of 30? receives also reflected radiation from the inner reflectors. Besides, the heating time is decreased to approximately 1 hour. The designed solar cooker can be effectively used with 30.3% daily thermal efficiency and paraffin wax due to the amount of energy stored.


1965 ◽  
Vol 13 (4) ◽  
pp. 452-469 ◽  
Author(s):  
C. Boardman ◽  
H. Van Trees

2014 ◽  
Vol 65 (9) ◽  
pp. 888
Author(s):  
Mao Hanping ◽  
Zhu Wenjing ◽  
Liu Hongyu

We assessed the feasibility of determining the nitrogen (N) and potassium (K) content of fresh, greenhouse-grown tomato leaves by using a new polarisation reflectance spectrum spectro-goniophotometer system developed by our research group and coupled with appropriate multivariate calibration methods. The main factors that affect the polarised reflectance characteristics of tomato leaves are discussed, including incident zenith angle, azimuth, detection zenith angle, and polariser angle. Orthogonal experiments and range analyses were performed to verify the optimum angle combination from the polarised reflectance parameters. Optimum angle combination experiments were then conducted to fine-tune the optimal parameters, which resulted in the following conditions: incident zenith angle, 60°; viewing zenith angle, 45°; polariser on light source, 0°; polariser on detector, 45°; and azimuth, 180°. On this basis, 122 fresh leaves of greenhouse-grown tomato were used to establish models of N and K content. Results showed that the performance of the iPLS-GA model under incident zenith angle 60° was superior to that of the other models. The optimal model for N was achieved with R = 0.9418 and root mean square error of prediction (RMSEP) = 0.519 in the prediction set; the optimal model for K was achieved with R = 0.8645 and RMSEP = 0.700 in the prediction set. The results show that it is feasible to measure the nutrient content of fresh, greenhouse-grown tomato leaves by polarisation reflectance spectroscopy with an appropriate multivariate calibration model under angle selection. This method allows for in-depth study of plant nutrient status and rapid detection at the single-leaf scale and has theoretical and practical significance.


Sign in / Sign up

Export Citation Format

Share Document