scholarly journals Applying barycentric coordinates on balanced supply voltages triangle to zero sequence voltage estimate without phase measurements

2019 ◽  
Vol 1333 ◽  
pp. 062012
Author(s):  
N N Lopatkin
2019 ◽  
Vol 84 ◽  
pp. 02008
Author(s):  
Lubomir Marciniak ◽  
Mateusz Piątek

Detection of high resistance earth faults in medium voltage networks is an important problem due to ineffectiveness of traditional earth fault protections. Such short circuits can be detected by the criterion of a reactive power of higher harmonics for zero sequence current and voltage. The main problem is determination of the power setting value in the protection, which depends on the asymmetry of phase-to-earth capacitances and higher harmonics in supply voltages, which are generated by non-linear loads. The intensive tests of the asymmetry of the zero sequence currents and voltages for harmonics and their reactive power have been carried out in 15 kV compensated network as a function of all relevant parameters, i.e.: maximum capacitance deviation of the network and protected line, percentage content of harmonics in supply voltages, capacitive current of the network and the line. It has been shown that third harmonics of the zero sequence voltage and current are the best suited for practical use, since the asymmetry reactive power of these components is the smallest among the considered harmonics and the protection sensitivity will be the highest.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Yingjie Wang ◽  
Haiyuan Liu ◽  
Wenchao Wang ◽  
Kangan Wang

The neutral-point (NP) potential balance control in three-level neutral-point-clamped (NPC) back-to-back converter is a research nodus. Its current strategies are the same as the strategies of a single three-level NPC converter. But the strategies do not give full play to its advantages that the neutral-point current can only flow through the connected midlines in both sides of the converter but does not flow through the DC-bus capacitors. In this paper, firstly the NP potential model based on the NP current injected is proposed. It overcomes numerous variable constraints and mutual coupling in the conventional model based on the zero-sequence voltage injected. And then on this basis, three NP-potential balance control algorithms, unilateral control, bilateral independent control, and bilateral coordinated control, are proposed according to difference requirements. All of these algorithms use the midlines rather than the DC-bus capacitors to flow the NP current as much as possible. Their control abilities are further quantitatively analyzed and compared. Finally, simulation results verify the validity and effectiveness of these algorithms.


Electronics ◽  
2019 ◽  
Vol 8 (6) ◽  
pp. 691 ◽  
Author(s):  
Ju-Yong Kim ◽  
Ho-Sung Kim ◽  
Ju-Won Baek ◽  
Dong-Keun Jeong

Low-voltage direct current (LVDC) distribution has attracted attention due to increased DC loads, the popularization of electric vehicles, energy storage systems (ESS), and renewable energy sources such as photovoltaic (PV). This paper studies a ±750 V bipolar DC distribution system and applies a 3-level neutral-point clamped (NPC) AC/DC converter for LVDC distribution. However, the 3-level NPC converter is fundamental in the neutral-point (NP) imbalance problem. This paper discusses the NP balance control method using zero-sequence voltage among various solutions to solve NP imbalance. However, since the zero-sequence voltage for NP balance control is limited, the NP voltage cannot be controlled to be balanced when extreme load differences occur. To maintain microgrid stability with bipolar LVDC distribution, it is necessary to control the NP voltage balance, even in an imbalance of extreme load. In addition, due to the bipolar LVDC distribution, the pole where a short-circuit condition occurs limits the short current until the circuit breaker operates, and a pole without a short-circuit condition must supply a stable voltage. Since the conventional 3-level NPC AC/DC converter alone cannot satisfy both functions, an additional DC/DC converter is proposed, analyzed, and verified. This paper is about a 3-level NPC AC/DC converter system for LVDC distribution. It can be used for the imbalance and short-circuit condition in bipolar LVDC distribution through the prototype of the 300 kW 3-level NPC AC/DC converter system and experimented and verified in various conditions.


Energies ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1293 ◽  
Author(s):  
Krzysztof Lowczowski ◽  
Jozef Lorenc ◽  
Jozef Zawodniak ◽  
Grzegorz Dombek

The paper analyzes the utilization of cable screen currents for earth fault identification and location. Attention is paid on cable and mixed feeders—cable and overhead lines. The principle of operation is based on utilization of 3 criterion values: Ratio of cable screen earthing current and zero sequence cable core current—RF110/15, phase shift between cable screen earthing current and zero sequence cable core current—α and cable screen admittance defined as a ratio of cable screen earthing current and zero sequence voltage—Y0cs. Earth fault location is possible thanks to discovered relation between RF110/15 and α, whereas Y0cs allows for reliable detection of earth faults. Detection and identification are very important because it allows to increase the reliability of supply—reduce downtime and number of consumers affected by the fault. The article presents a phase to ground fault current flow for different power system configurations. At the end solution, which improves location capabilities is proposed. The solution is analyzed in PSCAD software and verified by network experiment.


Sign in / Sign up

Export Citation Format

Share Document