scholarly journals Influence of water/cement ratio on mechanical strength of concrete with partial addition of fly ash and hydrated lime

2019 ◽  
Vol 1386 ◽  
pp. 012085
Author(s):  
O Hurtado-Figueroa ◽  
FJ Echavarria-Paez ◽  
JA Cárdenas-Gutiérrez
2014 ◽  
Vol 584-586 ◽  
pp. 1176-1181 ◽  
Author(s):  
Ying Zi Yang ◽  
Mao Guang Li ◽  
Hong Wei Deng ◽  
Qi Liu

The present study investigated experimentally effects of temperature on drying shrinkage of concrete in different water cement ratio and containing mineral admixture. Concrete was exposed to a controlled environment of 20±1oC, 35±1oC, 50±1oC, and 60% ± 5 RH, respectively. The drying shrinkage of concretes with water cement ratio of 0.3, 0.4 and 0.5 were evaluated. The resuluts showed that with the increase of temperature from 20 oC to 50 oC, the influence of water cement ratio on drying shrinkage of concrete was gradually weakened. The shrinkage strain of concretes with replacement of cement by 20% of ground granulated blast-furnace slag (GGBS), 10% of silica fume (SF), and 20% of fly ash (FA) were measured, respectively. Test results showed that GGBS had a little impact on drying shrinkage of concrete; Silica fume could increase the drying shrinkage of concrete significantly in the early and later ages, especially when concrete was subjected to high temperature; Fly ash reduced drying shrinkage in early ages and increased drying shrinkage of concrete in the later ages.


2014 ◽  
Vol 875-877 ◽  
pp. 177-182 ◽  
Author(s):  
Xiang Li ◽  
Hua Quan Yang ◽  
Ming Xia Li

The hydration degree of fly ash and the calcium hydroxide (CH) content were measured. Combined with the equilibrium calculation of cement hydration, a new method for assessment of the hydration degree of cement in the fly ash-cement (FC) pastes based on the CH content was developed. The results reveal that as the fly ash content increase, the hydration degree of fly ash and the CH content decrease gradually; at the same time, the hydration degree of cement increase. The hydration degree of cement in the FC pastes containing a high content of fly ash (more than 35%) at 360 days is as high as 80%, even some of which hydrates nearly completely. The effect of water-cement ratio to the hydration degree of cement in the FC pastes is far less distinct than that of the content of fly ash.


2019 ◽  
Vol 1386 ◽  
pp. 012071
Author(s):  
O Hurtado-Figueroa ◽  
EJ Vega-Vanegas ◽  
JA Cárdenas-Gutiérrez

2013 ◽  
Vol 275-277 ◽  
pp. 2093-2096
Author(s):  
Hong Hai Zhang ◽  
Ai Min Gong ◽  
Chun Yan Wang

Derived calculation formula of plastic strength, and used mortar consistency instrument to determine plastic strength. Through experiment, the fly ash and silicon powder that desulfurized or denitrated as grouting materials, its change rules of plastic strength were studid under different water cement ratio and different dosage conditions. Results shows that, between the two factors of water cement ratio and dosage, the water cement ratio affect significantly the plastic strength. The smaller the water cement ratio, the more obvious the increase of the plastic strength as time growth. Early plastic strength of silicon powder grouts is growing rapidly.


2013 ◽  
Vol 448-453 ◽  
pp. 1316-1320
Author(s):  
Hai Chao Wang ◽  
Ke Qiu ◽  
Shu Ling Gao

Using orthogonal design method of four factors and three levels, make a mix ratio experiment on sleeper concrete of China's railway sleepers, used steam curing concrete early compressive strength (stripping strength) as evaluation index. Study on different experimental factors of water-cement ratio, sand ratio, fly ash and admixture differently influenced on the early strength of sleeper concrete and analyze the difference impact of each factor and level for the orthogonal experiment. The result shows that the admixture is the main factor for early strength of concrete, followed by fly ash, water-cement ratio and sand ratio. It can provide technical guidance for railway sleeper field and has practical value.


2013 ◽  
Vol 771 ◽  
pp. 29-33
Author(s):  
Jin Xi Zhang ◽  
Chao Wang ◽  
Ming Yang Guo ◽  
Mao Cheng Ma

This paper studies the effect of water-cement ratio [w/ on the air-void parameters of cement concrete, which has a significant influence on the durability of concrete. Based on the experimental investigation, it is found that the impact on the air content of hardened concrete due to different water-cement ratio is not great. Test results also indicate that with the increase of water-cement ratio, the spacing factors also experienced a marked rise, and the mean diameters as well as the specific areas of air voids evidently increased or declined, respectively, which may lead to an adverse effect on the frost resistance of concrete.


2014 ◽  
Vol 541-542 ◽  
pp. 273-276
Author(s):  
Xiao Nan Dong ◽  
Xi Chen ◽  
Ling Chao Lu ◽  
Shuai Yang

The effects of two admixtures content i.e. water reducer, cellulose ether and water-cement ratio on mechanical strength and dry density of cement-based lightweight thermal insulation board are studied. The result indicates that the water-cement ratio is the important influential factor, which is easier to get good workability. And based on the mechanical strength and dry density, the best range of water reducer content and cellulose ether content are 0.3%-0.6% and 0.4%-0.6% respectively.


Sign in / Sign up

Export Citation Format

Share Document