scholarly journals Flexural behavior of RC beam strengthened by stay in place SFRC sheet formwork

2019 ◽  
Vol 1425 ◽  
pp. 012073
Author(s):  
Dmitriy Kapustin ◽  
Leis Zeid Kilani
Keyword(s):  
2019 ◽  
Vol 253 ◽  
pp. 02004
Author(s):  
Wael Alnahhal ◽  
Omar Aljidda

This study investigates the effect of using different volume fractions of basalt macro fibers (BMF) on the flexural behavior of concrete beams made with 100% recycled concrete aggregates (RCA) experimentally. A total of 4 reinforced concrete (RC) beam specimens were flexural tested until failure. The parameter investigated included the BMF volume fraction (0%, 0.5%, 1%, and 1.5%). The testing results of the specimens were compared to control beam specimen made with no added fibers. The experimental results showed that adding BMF improves the flexural capacity of the tested beams.


2021 ◽  
Vol 182 ◽  
pp. 106656
Author(s):  
Jiepeng Liu ◽  
Guping Chen ◽  
Yohchia Frank Chen ◽  
Tianxiang Xu

Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6473
Author(s):  
Jongho Park ◽  
Sun-Kyu Park ◽  
Sungnam Hong

Textile-reinforced mortar (TRM) is a strengthening material in which textiles are attached to reinforced concrete (RC) structures using an inorganic matrix. Although many studies on structural behavior, various factors that affect TRM behavior could not be determined clearly. Especially, the uncertainty in bonds due to inorganic materials was not considered. In this study, the flexural behavior of TRM-strengthened beams was determined considering intermediate crack debonding occurred. The TRM beam strengthening limit and TRM coefficients were defined considering the possibility of premature failure and experimental results of four other research on 22 specimens. Therefore, it is expected that a conservative design would be possible when the suggested strengthening limit coefficient is applied.


2019 ◽  
Vol 8 (4) ◽  
pp. 10872-10875

This research work aims adding further sustainability to the cement - less geopolymer concrete by replacing its natural gravel coarse aggregate by an industrial by-product, scrap steel slag. Geopolymer RC beam of grade M40 with 100% scrap steel as coarse aggregate was studied for its flexural behavior and compared with conventional reinforced cement concrete beam with gravel coarse aggregate. The specimens were tested under two-point static loading. The analysis was also carried out using ANSYS software. The study derived that in all stages, the performance of the geopolymer beam with scrap steel slag was marginally better than the conventional beam with gravel coarse aggregate. The ultimate load carrying capacity, deflection, service load and ductility factor of geopolymer RC beam with scrap steel slag coarse aggregate was comparable to the conventional cement concrete RC beam and is marginally higher. It is also found that conventional RC theory can be used in the calculation of moment capacity, deflection and crack width of the geopolymer beam of study and FE modeling and analysis using ANSYS were comparable to the experimental results.


2011 ◽  
Vol 94-96 ◽  
pp. 1618-1623
Author(s):  
Yi Hong Hong ◽  
Yi Li Wu ◽  
Xian Song Xie

The technology of strengthening RC beam with CFRP sheets is now a hotspot of research in civil engineering. The FEM analysis was made for the whole deformation course of the flexural behavior of RC beam with CFRP sheets on lateral side, and the result was coincided with the experimental results.


2019 ◽  
Vol 9 (10) ◽  
pp. 1981 ◽  
Author(s):  
Jongho Park ◽  
Sungnam Hong ◽  
Sun-Kyu Park

In this study, to compare strengthening efficiency and flexural behaviors of textile- reinforced mortar (TRM) according to various types of strengthening methods without the textile being impregnated, ten specimens were tested. The results showed that TRM was beneficial for uniform distribution of cracks and increased the strengthening efficiency and load-bearing capacity, as textile reinforcement ratio and textile lamination increased and the mesh size of the textile decreased and mechanical end anchorage applied. However, the strengthening effect was shown obviously until the yield load considering structural safety and serviceability.


2012 ◽  
Vol 6 (1) ◽  
pp. 26-32 ◽  
Author(s):  
Guibing Li ◽  
Yugang Guo ◽  
Xiaoyan Sun

It is an effective way to improve the flexural behavior of reinforced concrete (RC) members by externally bonded carbon fiber reinforcement polymer (CFRP) laminates on the soffit of the members. However, there is little investigation on flexural performance of RC beam flexurally strengthened by side-bonded FRP laminates. To investigate the flexural behavior of RC beams side-bonded CFRP laminates and the difference of RC beams strengthened by soffit-bonded and side-bonded CFRP laminates, a total of 8 CFRP-strengthened beams and 1 control beam were tested. The experimental results show that: 1) the first crack loads of RC beams strengthened by side-bonded CFRP laminates are much higher than that of RC beams strengthened by soffit-bonded CFRP laminates. The first crack loads of side-bonded CFRP laminates beams improved significantly; 2) Side-bonded and soffit-bonded CFRP laminates have almost the same effect on the flexural stiffness of RC beams strengthened with same quantity of CFRP laminates before tension rebar yielding. However, side-bonded CFRP laminates can affect crack width and crack pattern of the strengthened beams, and the pre-crack stage of RC beam by sidebonded CFRP laminates extended remarkably. 3) different to soffit-bonded CFRP laminates RC beams, side-bonded CFRP laminates cannot improve the first yielding and the ultimate load bearing capacity of RC beams.


Sign in / Sign up

Export Citation Format

Share Document