scholarly journals Investigation on Flexural Performance of RC Beams Flexurally Strengthened by Side-bonded CFRP Laminates

2012 ◽  
Vol 6 (1) ◽  
pp. 26-32 ◽  
Author(s):  
Guibing Li ◽  
Yugang Guo ◽  
Xiaoyan Sun

It is an effective way to improve the flexural behavior of reinforced concrete (RC) members by externally bonded carbon fiber reinforcement polymer (CFRP) laminates on the soffit of the members. However, there is little investigation on flexural performance of RC beam flexurally strengthened by side-bonded FRP laminates. To investigate the flexural behavior of RC beams side-bonded CFRP laminates and the difference of RC beams strengthened by soffit-bonded and side-bonded CFRP laminates, a total of 8 CFRP-strengthened beams and 1 control beam were tested. The experimental results show that: 1) the first crack loads of RC beams strengthened by side-bonded CFRP laminates are much higher than that of RC beams strengthened by soffit-bonded CFRP laminates. The first crack loads of side-bonded CFRP laminates beams improved significantly; 2) Side-bonded and soffit-bonded CFRP laminates have almost the same effect on the flexural stiffness of RC beams strengthened with same quantity of CFRP laminates before tension rebar yielding. However, side-bonded CFRP laminates can affect crack width and crack pattern of the strengthened beams, and the pre-crack stage of RC beam by sidebonded CFRP laminates extended remarkably. 3) different to soffit-bonded CFRP laminates RC beams, side-bonded CFRP laminates cannot improve the first yielding and the ultimate load bearing capacity of RC beams.

2011 ◽  
Vol 284-286 ◽  
pp. 2521-2525
Author(s):  
Gui Bing Li ◽  
Yu Gang Guo ◽  
Xiao Yan Sun

It is an effective way to increase the flexural performance of reinforced concrete (RC) beam by externally bonding fiber reinforcement polymer (FRP) laminate on the soffit of the beam. However, there is little investigation on flexural behavior of RC beam by side-bonding FRP laminates. To investigate the difference of flexural behavior between soffit-bonding and side-binding FRP laminates RC beams, a total of 9 RC beams were tested, including 8 strengthened beams and 1 control beam. The test results showed that: the first crack load of RC beam strengthened by side-bonding CFRP laminates is much bigger than that of RC beam strengthened by soffit-bonding CFRP laminates.The first crack load of side-bonding CFRP laminates beams improved significantly;side-bonding and soffit-bonding methods have the same effect on the flexural stiffness of RC beams with same quantity of CFRP laminates before tension steel rebar yielding. However, side-bonding can remarkably decrease the crack width and change the crack pattern.Side-bonding of CFRP laminates can extend the pre-crack stage of the strengthened beam;the first yielding load and the ultimate load of beams cannot be improved significantly by side-bonding FRP laminates.


2010 ◽  
Vol 163-167 ◽  
pp. 1451-1455
Author(s):  
Gui Bing Li ◽  
Ai Hui Zhang ◽  
Wei Liang Jin

Externally bonding fiber reinforcement polymer (FRP)laminate to the soffit of reinforced concrete (RC) beam is an effective way to increase its flexural strength. However, there is little investigation on flexural behavior of RC beam by side-bonding FRP laminates.To investigate the difference of flexural behavior between soffit-bonding and side-binding FRP laminates RC beams,a total of 9RC beams were tested, including 8 strengthened beams and 1 control beam. The test results showedthat:1) As fiber reinforced concrete, side-bonding FRP laminates can also effectively increase the first crack strength of RC beams.The first crack load improved significantly; 2) side-bonding FRP laminates is not a good method to improve the flexural behavior of RC beam at the yield stage and the post yield stage. 3) Side-bonding of CFRP laminates is a good way for existing RC beams to control its crack width and deflection.


2014 ◽  
Vol 578-579 ◽  
pp. 1338-1342
Author(s):  
Jin Lin Huang ◽  
Pei Yan Huang ◽  
Jin Hui Xie

Based on experimental research and calculation theory of flexural bearing capacity, a method for calculating the ultimate load bearing of normal section member strengthened with prestressed CFL is proposed. Static load experimental results of two beams show that when prestress level is 20%, the cracking load and yield load of RC beams strengthened with prestressed CFL are 37.5% and 39.3% respectively. It is larger than that of RC beam strengthened with nonprestressed CFL.


2009 ◽  
Vol 405-406 ◽  
pp. 343-349 ◽  
Author(s):  
Zong Cai Deng ◽  
Jian Hui Li ◽  
He Fei Lin

In order to investigate the strengthening effects of aramid fiber reinforced polymer (AFRP) sheets on the flexural performance of the corroded beams, the flexural behaviors of corroded RC beams strengthened with AFRP sheets under different degrees of corrosion (minor: reinforcement mass loss is 2.0%, medium: reinforcement mass loss is 6.0%) are researched experimentally in this paper, and compared with that of the control beams (un-corroded) and un-strengthened corroded beams. The results show that,compared with un-strengthened corroded beams under same degrees of corrosion, the cracking load, yield load and ultimate load of minor corroded RC beam strengthened with AFRP sheets is respectively increased by 20%, 27% and 60%, and increased by 15%, 36% and 83% for medium corroded RC beam strengthened with AFRP sheets respectively; The ultimate deflection of the medium corroded beam strengthened with AFRP sheets is 166% larger than that of corroded un-strengthened beam. AFRP sheets can improve significantly the bearing capacity and deformation for corroded RC beams.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Manjunatha Mahadevappa ◽  
Rakshith Shri Guru Krupa ◽  
Shaik Kabeer Ahmed ◽  
Rakshith Kumar Shetty

PurposeThe structural behavior of reinforced concrete (RC) beams made with waste foundry sand (WFS) was examined in this study by using investigational data. Five RC beams were tested in this present work, four beams with varying WFS content and one beam with natural aggregates. The factors considered for studying the flexural performance of RC beams were WFS content (10%, 20%, 30% and 40%), 15% Ground Granulated Blast Furnace Slag (GGBS) is used as supplementary cementitious (SCM) content for all beams and tension reinforcement ratio (0.95%). The crack pattern of the RC beams with WFS (RCB1, RCB2, RCB3 and RCB4) was similar to that of referral beam–RCB0. The RC beams made with WFS (RCB1, RCB2, RCB3 and RCB4) show lesser number of cracks than referral beam–RCB0. It is observed that RCB1 beam shows higher ultimate moment carrying capacity than other RC beams. A detailed assessment of the investigational results and calculations based on IS: 456-2000 code for flexural strength exhibited that the present provisions conservatively predicts the flexural strength and crack width of RC beams with WFS and 15% GGBS. It is suggested that 10% WFS can be used to make RC beam.Design/methodology/approachIn this present work, four RC beams made WFS and one RC beam made with natural aggregates. 15% GGBS is used as SCM for all RC beams. After casting of RC beams, the specimens were cured with wetted gunny bags for 28 days. After curing, RC beams like RCB0, RCB1, RCB2, RCB3 and RCB4 were tested under a four-point loading simply supported condition. An assessment of investigational results and calculations as per IS: 456-2000 code provisions has been made for flexural strength and crack width of RC beams with WFS and 15% GGBS. The crack pattern is also studied.FindingsFrom this experimental results, it is found that 10% WFS can be used for making RC beam. The RCB1 with 10% WFS shows better flexural performance than other RC beams. RC beams made with WFS show lesser number of cracks than referral beam–RCB0. IS: 456-2000 code provisions can be safely used to predict the moment capacity and crack width of RC beams with WFS and 15% GGBS.Originality/valueBy utilization of WFS, the dumping of waste and environmental pollution can be reduced. By experimental investigation, it is suggested that 10% WFS can be used to make RC structural members for low cost housing projects.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2809
Author(s):  
Md. Akter Hosen ◽  
Fadi Althoey ◽  
Mohd Zamin Jumaat ◽  
U. Johnson Alengaram ◽  
N. H. Ramli Sulong

Reinforced concrete (RC) structures necessitate strengthening for various reasons. These include ageing, deterioration of materials due to environmental effects, trivial initial design and construction, deficiency of maintenance, the advancement of design loads, and functional changes. RC structures strengthening with the carbon fiber reinforced polymer (CFRP) has been used extensively during the last few decades due to their advantages over steel reinforcement. This paper introduces an experimental approach for flexural strengthening of RC beams with Externally-Side Bonded Reinforcement (E-SBR) using CFRP fabrics. The experimental program comprises eight full-scale RC beams tested under a four-point flexural test up to failure. The parameters investigated include the main tensile steel reinforcing ratio and the width of CFRP fabrics. The experimental outcomes show that an increase in the tensile reinforcement ratio and width of the CFRP laminates enhanced the first cracking and ultimate load-bearing capacities of the strengthened beams up to 141 and 174%, respectively, compared to the control beam. The strengthened RC beams exhibited superior energy absorption capacity, stiffness, and ductile response. The comparison of the experimental and predicted values shows that these two are in good agreement.


2008 ◽  
Vol 385-387 ◽  
pp. 41-44 ◽  
Author(s):  
Shi Qi Cui ◽  
Jin Shan Wang ◽  
Zhao Zhen Pei ◽  
Zhi Liu

Reinforced concrete beams strengthened with externally bonded CFRP sheet and prestressed CFRP are analyzed in this paper. Crack developments and displacements with curvatures for different beams are analyzed. Test results show that prestressed CFRP are able to control the development of macro cracks in concrete and prestressed CFRP is an effective method to improve the toughness of concrete, reduce strengthening cost and meanwhile enhance bearing capacity of concrete beams.


2012 ◽  
Vol 466-467 ◽  
pp. 225-228
Author(s):  
Kan Kang ◽  
Peng Zhang ◽  
Feng Tao Liu

Based on the the self-developed prestressed CFRP plate anchorage,the test specimens comprised 5 RC beams strengthened with the way the external prestressed CFRP plates,the research on the different prestressed tension and different span beam about the influence of the bending capacity , ultimate bearing capacity,cross section strain, CFRP strain and deflection of the test reinforced beams on the research. The test results showed that: the externally prestressed CFRP plate can obviously increase of the flexural performance of RC beams, and improve the utilization rate of the strength of the CFRP plate, through the external prestressed anchor of CFRP plate for a tension, reducing the RC beams crack, and improving the ductility of the RC beams.


2013 ◽  
Vol 6 (2) ◽  
pp. 9-20
Author(s):  
Amer M. Ibrahim ◽  
Nazar K. Ali ◽  
Wissam D. Salman

This paper presents the flexural capacities of R.C two way hollow slabs of plastic spherical voids, also known as BubbleDeck slab system. Recently, various types of slab systems which can reduce the self-weight of slabs have been studied as the height and width of building structures rapidly increase (1). A biaxial hollow slab system is widely known as one of the effective slab systems which can reduce the self-weight of slabs (1). A BubbleDeck slab has a two-dimensional arrangement of voids within the slabs to reduce self-weight (2). The behavior of BubbleDeck slabs is influenced by the ratio of bubble diameter to slab thickness. To verify the flexural behavior of this BubbleDeck slab such as ultimate load, deflection, concrete compressive strain and crack pattern, two-dimensional flexural tests were tested by using special loading frame. Six test of specimens were used. Two were a conventional RC slab and four were BubbleDeck slabs having void diameter to slab thickness ratios of (0.51, 0.64 and 0.80). Results have shown that the crack pattern and flexural behavior depend on the void diameter to slab thickness ratio. The ultimate load capacities for BubbleDeck slabs having bubble diameter to slab thickness of (0.٥1 and 0.64) were the same of solid slabs, while when bubble diameter to slab thickness of (0.80) the ultimate capacities were reduced by about (10%).


2020 ◽  
Vol 39 (1) ◽  
pp. 105-112
Author(s):  
N. Yusuf ◽  
J.M. Kaura ◽  
A. Ocholi ◽  
M. Abbas

In this study, experimental research is carried out to assess the flexural performance of RC beams strengthened with different amount of CFRP laminates at the tension face. Twelve rectangular RC beams were fabricated and three are un-strengthened and used as reference beams and the remaining nine are strengthened with different amount of CFRP varying from single to triple layers and all are tested to failure under three points bending test. The increase of ultimate strength provided by the bonded CFRP laminates is assessed and failure modes is identified and compared to the un-strengthened RC beams. The results indicated that the flexural capacity of the beams was significantly improved as the amount of the laminates increases that ranged from 20% to 52% increased for single to triple layers laminates. It is concluded that the attachment of CFRP laminates has substantial influence on the performance of CFRP strengthened RC beams. Based on the observed results, recommendations are made that externally application of CFRP laminates can be used for a significant enhancement of the strength deficient RC beams in increasing the ultimate load carrying capacity. Keywords: CPRP laminate, Reinforced concrete, ductility, index, epoxy resin, flexural strengthening


Sign in / Sign up

Export Citation Format

Share Document