scholarly journals Evaluation of Flexural Behavior of Textile-Reinforced Mortar-Strengthened RC Beam Considering Strengthening Limit

Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6473
Author(s):  
Jongho Park ◽  
Sun-Kyu Park ◽  
Sungnam Hong

Textile-reinforced mortar (TRM) is a strengthening material in which textiles are attached to reinforced concrete (RC) structures using an inorganic matrix. Although many studies on structural behavior, various factors that affect TRM behavior could not be determined clearly. Especially, the uncertainty in bonds due to inorganic materials was not considered. In this study, the flexural behavior of TRM-strengthened beams was determined considering intermediate crack debonding occurred. The TRM beam strengthening limit and TRM coefficients were defined considering the possibility of premature failure and experimental results of four other research on 22 specimens. Therefore, it is expected that a conservative design would be possible when the suggested strengthening limit coefficient is applied.

2019 ◽  
Vol 9 (10) ◽  
pp. 1981 ◽  
Author(s):  
Jongho Park ◽  
Sungnam Hong ◽  
Sun-Kyu Park

In this study, to compare strengthening efficiency and flexural behaviors of textile- reinforced mortar (TRM) according to various types of strengthening methods without the textile being impregnated, ten specimens were tested. The results showed that TRM was beneficial for uniform distribution of cracks and increased the strengthening efficiency and load-bearing capacity, as textile reinforcement ratio and textile lamination increased and the mesh size of the textile decreased and mechanical end anchorage applied. However, the strengthening effect was shown obviously until the yield load considering structural safety and serviceability.


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 700
Author(s):  
Maria Concetta Oddo ◽  
Giovanni Minafò ◽  
Lidia La Mendola

In recent years, the scientific community has focused its interest on innovative inorganic matrix composite materials, namely TRM (Textile Reinforced Mortar). This class of materials satisfies the need of retrofitting existing masonry buildings, by keeping the compatibility with the substrate. Different recent studies were addressed to improve the knowledge on their mechanical behaviour and some theoretical models were proposed for predicting the tensile response of TRM strips. However, this task is complex due to the heterogeneity of the constituent materials and the stress transfer mechanism developed between matrix and fabric through the interface in the cracked stage. This paper presents a state-of-the-art review on the existing constitutive models for the tensile behavior of TRM composites. Literature experimental results of tensile tests on TRM coupons are presented and compared with the most relevant analytical models proposed until now. Finally, a new experimental study is presented and its results are used to further verify the reliability of the literature expressions.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1440
Author(s):  
Pei-Yuan Lun ◽  
Xiao-Gang Zhang ◽  
Ce Jiang ◽  
Yi-Fei Ma ◽  
Lei Fu

The premature failure of reinforced concrete (RC) structures is significantly affected by chloride-induced corrosion of reinforcing steel. Although researchers have achieved many outstanding results in the structural capacity of RC structures in the past few decades, the topic of service life has gradually attracted researchers’ attention. In this work, based on the stress intensity, two models are developed to predict the threshold expansive pressure, corrosion rate and cover cracking time of the corrosion-induced cracking process for RC structures. Specifically, in the proposed models, both the influence of initial defects and modified corrosion current density are taken into account. The results given by these models are in a good agreement with practical experience and laboratory studies, and the influence of each parameter on cover cracking is analyzed. In addition, considering the uncertainty existing in the deterioration process of RC structures, a methodology based on the third-moment method in regard to the stochastic process is proposed, which is able to evaluate the cracking risk of RC structures quantitatively and predict their service life. This method provides a good means to solve relevant problems and can prolong the service life of concrete infrastructures subjected to corrosion by applying timely inspection and repairs.


2019 ◽  
Vol 253 ◽  
pp. 02004
Author(s):  
Wael Alnahhal ◽  
Omar Aljidda

This study investigates the effect of using different volume fractions of basalt macro fibers (BMF) on the flexural behavior of concrete beams made with 100% recycled concrete aggregates (RCA) experimentally. A total of 4 reinforced concrete (RC) beam specimens were flexural tested until failure. The parameter investigated included the BMF volume fraction (0%, 0.5%, 1%, and 1.5%). The testing results of the specimens were compared to control beam specimen made with no added fibers. The experimental results showed that adding BMF improves the flexural capacity of the tested beams.


2013 ◽  
Vol 302 ◽  
pp. 338-342
Author(s):  
Soo Yeon Seo

This paper presents the study to find retrofit effect in case of Near-Surface-Mounted Retrofit (NSMR) using Carbon Fiber Reinforcement Polymer (CFRP) plate targeting reinforcement concrete (RC) beam by comparing the previous Externally Bonded Retrofit (EBR) method through experimental analytical works. Three RC beam specimens were made and two of them were retrofitted with CFRP plate by using EBR and NSMR. Also Finite Element (FE) analysis was performed in order to simulate the structural behavior of the beams by considering the bond properties between concrete and CFRP. From the study, it was found that the beam retrofitted with EBR hada reduction of bond capacity in the joint while the beam retrofitted with NSMR had perfect bond capacity.


2018 ◽  
Author(s):  
◽  
Ayman Elzohairy

[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT AUTHOR'S REQUEST.] The steel-concrete composite beam represents a structural system widely employed in both buildings and girder bridges. The coupling between steel beams and concrete flanges assures both economic and structural benefits because of quick construction of steel structures and large increase in stiffness due to the presence of concrete. Strengthening with external post-tensioning (PT) force is particularly effective and economical for long-span steel-concrete composite beams and has been employed with great success to increase the bending and shear resistance and correct excessive deflections. Applying external PT force to the steel-concrete composite beam is considered an active strengthening technique that can create permanent internal straining action in the beam which is opposite to the existing straining action due to the applied service loads. The most benefits of using this system of strengthening are an elastic performance to higher loads, higher ultimate capacity, and reduction in deformation under the applied loads. Under service loads, bridge superstructures are subjected to cyclic loads which may cause a premature failure due to fatigue. Therefore, fatigue testing is critical to evaluate existing design methods of steel-concrete composite beams. ... This research presents static and fatigue tests on four steel-concrete composite specimens to evaluate the effect of externally post-tensioned tendons on the ultimate strength and fatigue behavior of composite beams. Fatigue tests are conducted to a million cycles under a four-point bending test. In addition, final static tests are performed on fatigued specimens to evaluate the residual strength of the strengthened specimen. A numerical model is described to predict the fatigue response of the composite beam by considering the fatigue damage in the concrete flange. The accuracy of the developed numerical model is validated using the existing test data. The static test results indicate that the external post-tensioning force improves the flexural behavior of the strengthened specimen by increasing the beam capacity and reducing the tensile stress in the bottom flange of the steel beam. The fatigue results demonstrate that the external post-tensioning significantly decreases the strains in the shear connectors, concrete flange, and steel beam. The tendons demonstrated an excellent fatigue performance, with no indication of distress at the anchors.


2016 ◽  
Vol 2016 ◽  
pp. 1-17 ◽  
Author(s):  
Rasool Ahmadi ◽  
Omid Rashidian ◽  
Reza Abbasnia ◽  
Foad Mohajeri Nav ◽  
Nima Usefi

An experimental test was carried out on a 3/10 scale subassemblage in order to investigate the progressive collapse behavior of reinforced concrete (RC) structures. Investigation of alternative load paths and resistance mechanisms in scaled subassemblage and differences between the results of full-scale and scaled specimens are the main goals of this research. Main characteristics of specimen response including load-displacement curve, mechanism of formation and development of cracks, and failure mode of the scaled specimen had good agreement with the full-scale specimen. In order to provide a reliable numerical model for progressive collapse analysis of RC beam-column subassemblages, a macromodel was also developed. First, numerical model was validated with experimental tests in the literature. Then, experimental results in this study were compared with validated numerical results. It is shown that the proposed macromodel can provide a precise estimation of collapse behavior of RC subassemblages under the middle column removal scenario. In addition, for further evaluation, using the validated numerical model, parametric study of new subassemblages with different details, geometric and boundary conditions, was also done.


2018 ◽  
Vol 7 (4) ◽  
pp. 2075 ◽  
Author(s):  
Yasmin Murad

 The use of carbon fiber reinforced polymer (CFRP) sheets is becoming a widely accepted solution for strengthening and repairing rein-forced concrete (RC) structures. To date, the behavior of RC beams, strengthened with 60˚ and 45˚ inclined CFRP sheets, has not clearly explained. An experimental program is proposed in this paper to investigate the flexural behavior of RC beams strengthened with CFRP sheets. CFRP sheets were epoxy bonded to the tension face to enhance the flexural strength of beams inducing different orientation angles of 0˚, 45˚, 60˚ and 90˚ with the beam longitudinal axis. The study shows that strengthening RC beams with CFRP sheets is highly influenced by the orientation angle of the sheets. The orientation angle plays a key role in changing the crack pattern and hence the failure mode. The influence of CFRP sheets was adequate on increasing the flexural strength of RC beams but the ductility of the beams was reduced. The best performance was obtained when strengthening RC beam obliquely using 45˚ inclined CFRP sheets where the specimen experienced additional deflection and strength of 56% and 12% respectively and the reduction in its ductility was the least. It is recom-mended to strengthen RC beams, which are weak in flexure, using 45˚ inclined CFRP sheets.  


Sign in / Sign up

Export Citation Format

Share Document