scholarly journals A novel and innovative drug delivery system in fast dissolving oral film of glimepiride-betacyclodextrin inclusion complexes

2020 ◽  
Vol 1469 ◽  
pp. 012021
Author(s):  
F Darusman ◽  
B P Soewondo ◽  
S A M N Alatas
2017 ◽  
Vol 53 (1) ◽  
pp. 57-65 ◽  
Author(s):  
J. Jager ◽  
K. Obst ◽  
S. B. Lohan ◽  
J. Viktorov ◽  
S. Staufenbiel ◽  
...  

Author(s):  
Lendave A. S.

Microsponge drug delivery system (MDDS) technology holds a remarkable promise for achieving the aim of controlled and site-specific drug delivery which reduce systemic exposure and minimize local cutaneous reactions to active drug and as a result, has attracted huge interest of researchers. Microsponges consist of microporus beads, typically 10-25 microns in diameter, loaded with active agent. When carried out to the skin, the microsponge releases its active element on a time mode and also in reaction to different stimuli (rubbing, temperature, pH, and many others) which can be used ordinarily for topical and lately for oral management. This article gives a extensive assessment of Microsponges drug transport system discussing the concepts and practise methods. Appropriate analytical techniques for characterization of microsponges like particle size and its distribution, surface morphology, porosity, density, In Vitro drug release studies as well as applications of microsponge and future prospects are covered. Advantages/Potential functions, limitations and their possible remedies of the microsponge and programmable parameters are also mentioned. The microsponge are used in the sunscreens, creams, ointments, over the counter skin care preparations, which are meant for topical application. microsponge drug delivery can provide increased efficacy for topical active agent with enhanced safety, extended product stability.


Author(s):  
Dipit Jagannath Ingale ◽  
N H Aloorkar ◽  
A S KulkarnI ◽  
R.A. Patil Patil

Transdermal drug delivery system (TDDS) is not practicable for delivery of materials whose final target is skin itself. Controlled release of drugs onto the epidermis with assurance that the drug remains primarily localized and does not enter the systemic circulation in significant amounts is a challenging area of research. Microsponges are highly porous micro-sized particles with a unique ability for entrapping active pharmaceutical ingredients. To control the delivery rate of active agents to a predetermined site in human body has been one of the biggest challenges faced by scientists. Microsponges are safe biologically and offer unique advantage of programmable release. This technology offers entrapment of ingredients and is believed to contribute towards reduced side effects, improved stability, increased elegance and enhanced formulation flexibility. This technology is being used for topical formulations and also for oral administration. The present review describes microsponge technology including its preparation, characterization, programmable parameters and release mechanism of microsponge drug delivery system.


2018 ◽  
Vol 115 (13) ◽  
pp. E2997-E3006 ◽  
Author(s):  
Eleonora Vighi ◽  
Dragana Trifunović ◽  
Patricia Veiga-Crespo ◽  
Andreas Rentsch ◽  
Dorit Hoffmann ◽  
...  

Inherited retinal degeneration (RD) is a devastating and currently untreatable neurodegenerative condition that leads to loss of photoreceptor cells and blindness. The vast genetic heterogeneity of RD, the lack of “druggable” targets, and the access-limiting blood–retinal barrier (BRB) present major hurdles toward effective therapy development. Here, we address these challenges (i) by targeting cGMP (cyclic guanosine- 3′,5′-monophosphate) signaling, a disease driver common to different types of RD, and (ii) by combining inhibitory cGMP analogs with a nanosized liposomal drug delivery system designed to facilitate transport across the BRB. Based on a screen of several cGMP analogs we identified an inhibitory cGMP analog that interferes with activation of photoreceptor cell death pathways. Moreover, we found liposomal encapsulation of the analog to achieve efficient drug targeting to the neuroretina. This pharmacological treatment markedly preserved in vivo retinal function and counteracted photoreceptor degeneration in three different in vivo RD models. Taken together, we show that a defined class of compounds for RD treatment in combination with an innovative drug delivery method may enable a single type of treatment to address genetically divergent RD-type diseases.


2019 ◽  
Vol 7 (2) ◽  
pp. 47-55 ◽  
Author(s):  
Saloni Jain ◽  
Rahul Kumar Ancheria ◽  
Saumya Shrivastava ◽  
Shankar Lal Soni ◽  
Mukesh Sharma

Nanogels are innovative drug delivery system that can play an integral part in pointing out many issues related to old and modern courses of treatment such as nonspecific effects and poor stability. Biomedical and pharmaceutical applications of Nanogels have been explored for tissue regeneration, wound healing, surgical device, implantation, and peroral, rectal, vaginal, ocular, and transdermal drug delivery. Nanogels are proficiently internalized by the target cells, avoid accumulating in nontarget tissues thereby lower the therapeutic dosage and minimize harmful side effects. Nanogels may be defined as highly cross linked nano-sized hydrogels ranges from 20-200 nm. They can be administered through various routes, including oral, pulmonary, nasal, parenteral, intra-ocular etc. They have a high degree of drug loading capacity and it shows better permeation capabilities due to smaller size. Nanogels are the novel drug delivery systems for both hydrophilic and hydrophobic drugs.  


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Ardavan Parhizkar ◽  
Hanieh Nojehdehian ◽  
Fahimeh Tabatabaei ◽  
Saeed Asgary

The objective of the current study was to introduce “Polylactic co-Glycolic Acid- (PLGA-) Coated Ceramic Microparticles” as an innovative drug delivery system, loaded with a new combination of triple antibiotics (penicillin G, metronidazole, and ciprofloxacin (PMC)) for use in endodontic treatments. Ceramic microparticles were made from β-tricalcium phosphate and hydroxyapatite and examined by “Scanning Electronic Microscope (SEM).” Then, fixed amounts of the selected antibiotics were added to a prepared PLGA solution and stirred thoroughly. Next, the prepared ceramic microparticles were dispersed completely in the drugs solution. The deposited “PMC-loaded PLGA-coated ceramic microspheres (PPCMs)” were dried and incubated in phosphate buffer saline (PBS) for 21 days. The drug release from PPCMs was quantified by a UV spectrophotometer. The antimicrobial activity of PPCMs was investigated using the “Agar Plate Diffusion Test (ADT),” “Minimum Inhibitory Concentration (MIC),” and “Minimum Bactericidal Concentration (MBC)” against Enterococcus faecalis (E. faecalis) and Aggregatibacter actinomycetemcomitans (A.a). The cell viability test (MTT) was conducted for cytotoxicity against human gingival fibroblasts. SEM micrographs of PPCMs showed spherical-like ceramic microparticles with smooth surfaces. Crystal-like antibiotic particles (chunks) were also found on PPCMs. Initial burst of antibiotics (31 µg/mL, 160 µg/mL, and 18 µg/mL for ciprofloxacin, metronidazole, and penicillin G, respectively, in the first 4 days) followed by gradual and sustained release was observed within a period of 21 days. PPCMs demonstrated pH close to normal physiological environment and antibacterial activity against E. faecalis and A.a in the first 2 days. MTT showed cell viability of more than 70% for PPCMs after 24 h and 72 h of exposure. In conclusion, PPCMs demonstrated satisfactory release of antibiotics, antibacterial activity against the selected microorganisms, and biocompatibility. Thus, PPCMs may be used to deliver modified triple antibiotics to the root canal system for use in endodontic applications.


2020 ◽  
Vol 10 (15) ◽  
pp. 5151
Author(s):  
Assumpta Peral ◽  
Alejandro Martinez-Aguila ◽  
Cristina Pastrana ◽  
Fernando Huete-Toral ◽  
Carlos Carpena-Torres ◽  
...  

Glaucoma is an optical neuropathy associated to a progressive degeneration of retinal ganglion cells with visual field loss and is the main cause of irreversible blindness in the world. The treatment has the aim to reduce intraocular pressure. The first therapy option is to instill drugs on the ocular surface. The main limitation of this is the reduced time of the drug staying on the cornea. This means that high doses are required to ensure its therapeutic effect. A drug-loaded contact lens can diffuse into the post lens tear film in a constant and prolonged flow, resulting in an increased retention of the drug on the surface of the cornea for up to 30 min and thus providing a higher drug bioavailability, increasing the therapeutic efficacy, reducing the amount of administered drug, and thereby provoking fewer adverse events. Several different systems of drug delivery have been studied in recent decades; ranging from more simple methods of impregnating the lenses, such as soaking, to more complex ones, such as molecular imprinting have been proposed. Moreover, different drugs, from those already commercially available to new substances such as melatonin have been studied to improve the glaucoma treatment efficacy. This review describes the role of contact lenses as an innovative drug delivery system to treat glaucoma.


2018 ◽  
Vol 19 (5) ◽  
pp. 2087-2102 ◽  
Author(s):  
Ahmad Abdul-Wahhab Shahba ◽  
Abid Riaz Ahmed ◽  
Fars Kaed Alanazi ◽  
Kazi Mohsin ◽  
Sayed Ibrahim Abdel-Rahman

Sign in / Sign up

Export Citation Format

Share Document