scholarly journals An Overview of Nanogel –Novel Drug Delivery System

2019 ◽  
Vol 7 (2) ◽  
pp. 47-55 ◽  
Author(s):  
Saloni Jain ◽  
Rahul Kumar Ancheria ◽  
Saumya Shrivastava ◽  
Shankar Lal Soni ◽  
Mukesh Sharma

Nanogels are innovative drug delivery system that can play an integral part in pointing out many issues related to old and modern courses of treatment such as nonspecific effects and poor stability. Biomedical and pharmaceutical applications of Nanogels have been explored for tissue regeneration, wound healing, surgical device, implantation, and peroral, rectal, vaginal, ocular, and transdermal drug delivery. Nanogels are proficiently internalized by the target cells, avoid accumulating in nontarget tissues thereby lower the therapeutic dosage and minimize harmful side effects. Nanogels may be defined as highly cross linked nano-sized hydrogels ranges from 20-200 nm. They can be administered through various routes, including oral, pulmonary, nasal, parenteral, intra-ocular etc. They have a high degree of drug loading capacity and it shows better permeation capabilities due to smaller size. Nanogels are the novel drug delivery systems for both hydrophilic and hydrophobic drugs.  

2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Wang Ya-zhen ◽  
Wu Xue-ying ◽  
Di Yu-tao ◽  
Lan Tian-yu ◽  
Zu Li-wu

In this paper, in order to take advantage of the combination between magnetic nano-Fe3O4 and surface modifier, a pH-sensitive drug delivery system that could effectively deliver doxorubicin (DOX) to tumor tissue was constructed. The novel drug delivery system named Fe3O4-TIPTS-g-(PEI-co-PEG) was prepared through three steps. The first step, a surface modifier with the thiol group, thiohydrazide-iminopropyltriethoxysilane surface modifier (named TIPTS), was synthesized for the first time. The second step, Fe3O4-TIPTS was synthesized by treating nano-Fe3O4 with TIPTS. The last step, Fe3O4-TIPTS-g-(PEI-co-PEG) was synthesized in the presence of the Fe3O4-TIPTS, polyethyleneimine (PEI), and polyethylene glycol (PEG) by mercapto-initiated radical polymerization. Among them, magnetic nanoparticles (MNPs) were used as magnetically responsive carriers, PEG was the surface-modifying compound, and PEI was the drug loading site which primary amine reacts with doxorubicin (DOX). Targeted nanoparticles were considerably stabilize in various physiological solutions and exhibited pH-sensitive performance in drug release. Thence, Fe3O4-TIPTS-g-(PEI-co-PEG) is a promising nanocarrier for targeting tumor therapy.


NANO ◽  
2019 ◽  
Vol 14 (01) ◽  
pp. 1950013 ◽  
Author(s):  
Ying Jiang ◽  
Chaoyang Guan ◽  
Xu Liu ◽  
Yushan Wang ◽  
Huaqin Zuo ◽  
...  

Doxorubicin (DOX) plays an important part in lymphoma treatment. However, various side effects on normal tissues restrict its clinical use. Nanocarriers connected by Gly–Phe–Leu–Gly (GFLG) can be equipped with the advantages of nanoparticles (NPs), their enhanced permeability and retention (EPR) effect, and surface modifiability. Nanocarriers can also be specifically enzymatically hydrolyzed by cathepsin (Cath) B, a kind of enzyme highly expressed in tumor cells. In this work, we proposed a novel drug delivery system comprising GFLG conjugated with copper sulfide (CuS) NPs loaded with DOX. The system, designated as CuS-GFLG-DOX, could be used for NP-based targeted combination chemotherapy. Results showed that the drug delivery system had an appropriate diameter, good dispersibility, high encapsulation efficiency and high drug loading. The system also exhibited an excellent targeting of lymphoma cells and an enhanced antitumor activity. The possible pathway to induce cytotoxic effects was Bcl-2/caspase-mediated apoptosis pathway. In conclusion, CuS-GFLG-DOX could precisely deliver drugs to lymphoma cells and could be a novel and promising therapeutic option for lymphoma.


2021 ◽  
Vol 11 (1) ◽  
pp. 162-170
Author(s):  
Arumugam Kauslya ◽  
Payal D Borawake ◽  
Jitendra V Shinde ◽  
Rajashree S Chavan

Niosomes are a novel drug delivery system, in which the medication is encapsulated in a vesicle. The vesicle is composed of a bilayer of non-ionic surfactants. Niosomes are mostly preferred than liposomes because they are stable and cost effective. Niosomes potentiate the pharmacological action of the drug molecules by delaying the clearance of the drug from the circulation, protecting the drug from biological environment and restricting the effects only to the target cells. In novel drug delivery it has applications on treatment of cancer, used as a carrier in haemoglobin, delivery of the peptide drugs through oral route, in treatment of leishmaniasis, in ophthalmic delivery and as carrier in dermal drug delivery. This review article focuses on the composition, advantages, types of niosomes, methods of preparation, characterization and application of the vesicular system. Keywords: Niosomes, Composition, Types, Method of preparation, Factors affecting, Application.


Author(s):  
Prabhat Kumar Sahoo ◽  
Neha S.L ◽  
Arzoo Pannu

Lipids are used as vehicles for the preparation of various formulations prescribed for administrations, including emulsions, ointments, suspension, tablets, and suppositories. The first parental nano-emulsion was discovered from the 1950s when it was added to the intravenous administration of lipid and lipid-soluble substances. Lipid-based drug delivery systems are important nowadays. Solid nanoparticles (SLN) and Nanostructured lipid carriers (NLC) are very proficient due to the ease of production process, scale-up capability, bio-compatibility, the biodegradability of formulation components and other specific features of the proposed route. The administration or nature of the materials must be loaded into these delivery systems. The main objectives of this review are to discuss an overview of second-generation nanoparticles, their limitations, structures, and route of administration, with emphasis on the effectiveness of such formulations. NLC is the second generation of lipid nanoparticles having a structure like nanoemulsion. The first generation of nanoparticles was SLN. The difference between both of them is at its core. Both of them are a colloidal carrier in submicron size in the range of 40-1000 nm. NLC is the most promising novel drug delivery system over the SLN due to solving the problem of drug loading and drug crystallinity. Solid and liquid lipids combination in NLC formation, improve its quality as compare to SLN. NLC has three types of structures: random, amorphous, and multiple. The random structure containing solid-liquid lipids and consisting crystal and the liquid lipid irregular in shape; thereby enhance the ability of the lipid layer to pass through the membrane. The second is the amorphous structure. It is less crystalline in nature and can prevent the leakage of the loaded drug. The third type is multiple structures, which have higher liquid lipid concentrations than other types. The excipients used to form the NLC are bio-compatible, biodegradable and non-irritating, most of which can be detected using GRAS. NLC is a promising delivery system to deliver the drug through pulmonary, ocular, CNS, and oral route of administration. Various methods of preparation and composition of NLC influence its stability Parameters. In recent years at the educational level, the potential of NLC as a delivery mechanism targeting various organs has been investigated in detail.


2021 ◽  
Vol 21 ◽  
Author(s):  
Madhukar Garg ◽  
Anju Goyal ◽  
Sapna Kumari

: Cubosomes are highly stable nanostructured liquid crystalline dosage delivery form derived from amphiphilic lipids and polymer-based stabilizers converting it in a form of effective biocompatible carrier for the drug delivery. The delivery form comprised of bicontinuous lipid bilayers arranged in three dimensional honeycombs like structure provided with two internal aqueous channels for incorporation of number of biologically active ingredients. In contrast liposomes they provide large surface area for incorporation of different types of ingredients. Due to the distinct advantages of biocompatibility and thermodynamic stability, cubosomes have remained the first preference as method of choice in the sustained release, controlled release and targeted release dosage forms as new drug delivery system for the better release of the drugs. As lot of advancement in the new form of dosage form has bring the novel avenues in drug delivery mechanisms so it was matter of worth to compile the latest updates on the various aspects of mentioned therapeutic delivery system including its structure, routes of applications along with the potential applications to encapsulate variety drugs to serve health related benefits.


2020 ◽  
Vol 21 ◽  
Author(s):  
Sayed Md Mumtaz ◽  
Gautam Bhardwaj ◽  
Shikha Goswami ◽  
Rajiv Kumar Tonk ◽  
Ramesh K. Goyal ◽  
...  

: The Glioblastoma Multiforme (GBM; grade IV astrocytoma) exhort tumor of star-shaped glial cell in the brain. It is a fast-growing tumor that spreads to nearby brain regions specifically to cerebral hemispheres in frontal and temporal lobes. The etiology of GBM is unknown, but major risk factors are genetic disorder like neurofibromatosis and schwanomatosis which develop the tumor in the nervous system. The management of GBM with chemo-radio therapy leads to resistance and current drug regimen like Temozolomide (TMZ) is less efficacious. The reasons behind failure of drugs are due to DNA alkylation in cell cycle by enzyme DNA guanidase and mitochondrial dysfunction. Naturally occurring bio-active compounds from plants known as phytochemicals, serve as vital sources for anti-cancer drugs. Some typical examples include taxol analogs, vinca alkaloids such as vincristine, vinblastine, podophyllotoxin analogs, camptothecin, curcumin, aloe emodin, quercetin, berberine e.t.c. These phytochemicals often act via regulating molecular pathways which are implicated in growth and progression of cancers. However the challenges posed by the presence of BBB/BBTB to restrict passage of these phytochemicals, culminates in their low bioavailability and relative toxicity. In this review we integrated nanotech as novel drug delivery system to deliver phytochemicals from traditional medicine to the specific site within the brain for the management of GBM.


Sign in / Sign up

Export Citation Format

Share Document