scholarly journals Research on Special English Teaching and New Technology Development Based on New Energy Materials

2020 ◽  
Vol 1549 ◽  
pp. 042058
Author(s):  
Min Zhu
2014 ◽  
Vol 1 (1) ◽  
pp. 379-384
Author(s):  
Daniela Cristina Momete ◽  
Tudor Prisecaru

AbstractA new industrial revolution is on the verge in the energy domain considering the knowledge and skills acquired through the development of new energy technologies. Shale gas processing, unconventional oil exploitation, new exploring/drilling methods, mature renewable energy or in progress, all generated a wealth of knowledge in new technology. Therefore, this paper aims to analyse the positive and negative aspects of energy solutions, and to reveal the way to a world where a valid sustainable development, based on safe and rational premises, is actually considered. The paper also introduces suggestions for the energy system, which has a crucial importance in coping with the resource management of the future, where the economic, social, and environmental/climate needs of the post-crisis world should be suitably considered.


Author(s):  
Jianwei Zhou ◽  
Wei Zheng ◽  
Taekoo Lee

Abstract Multi-Chip Package (MCP) decapsulation is now becoming a rising problem. Because for traditional decapsulation method, acid can’t dissolve the top silicon die to expose the bottom die surface in MCP. It makes inspecting the bottom die in MCP is difficult. In this paper, a new MCP decapsulation technology combining mechanical polishing with chemical etching is introduced. This new technology can remove the top die quickly without damaging the bottom die using KOH and Tetra-Methyl Ammonium Hydroxide (TMAH). The technology process and relative application are presented. The factors that affect the KOH and TMAH etch rate are studied. The usage difference between the two etchant is discussed.


Impact ◽  
2020 ◽  
Vol 2020 (6) ◽  
pp. 15-17
Author(s):  
Shigeru Yao ◽  
Patchiya Phanthong

Professor Shigeru Yao and Dr Patchiya Phanthong are conducting highly collaborative research that is focused on improving mechanical technology for recycling plastics, as well as extending the shelf life of plastics, thus reducing plastic waste. The researchers are based at the Yao Laboratory, in the Department of Chemical Engineering, Fukuoka University, Japan. Phanthong is a Project Research Assistant Professor from the Research Institute for the Creation of Functional and Structural Materials working under the supervision of Yao. In addition to heading up the lab, Yao is also the lead for the NEDO (New Energy and Industrial Technology Development Organization) Advanced Research Program for Energy and Environmental Technologies. In their work, the researchers are collaborating with both industry and academia which is essential to its progression.


Author(s):  
Yakov Ben-Haim

Innovations create both opportunities and dilemmas. Innovations provide new and purportedly better opportunities, but—because of their newness—they are often more uncertain and potentially worse than existing options. There are new drugs, new energy sources, new foods, new manufacturing technologies, new toys and new pedagogical methods, new weapon systems, new home appliances, and many other discoveries and inventions. To use or not to use a new and promising but unfamiliar and hence uncertain innovation? That dilemma faces just about everybody. Furthermore, the paradigm of the innovation dilemma characterizes many situations even when a new technology is not actually involved. The dilemma arises from new attitudes, like individual responsibility for the global environment, or new social conceptions, like global allegiance and self-identity transcending all nation-states. These dilemmas have far-reaching implications for individuals, organizations, and society at large as they make decisions in the age of innovation. The uncritical belief in outcome optimization—“more is better, so most is best”—pervades decision-making in all domains, but this is often irresponsible when facing the uncertainties of innovation. There is a great need for practical conceptual tools for understanding and managing the dilemmas of innovation. This book offers a new direction for a wide audience. It discusses examples from many fields, including e-reading, online learning, bipolar disorder and pregnancy, disruptive technology in industry, stock markets, agricultural productivity and world hunger, military hardware, military intelligence, biological conservation, and more.


Author(s):  
Pablo Cazenave ◽  
Ming Gao ◽  
Hans Deeb ◽  
Sean Black

The project “Development of an Industry Test Facility and Qualification Processes for in-line inspection (ILI) technology Evaluation and Enhancements” aims to expand knowledge of ILI technology performance and identify gaps where new technology is needed. Additionally, this project also aims to provide ILI technology developers, researchers and pipeline operators a continuing resource for accessing test samples with a range of pipeline integrity threats and vintages; and inline technology test facilities at the Technology Development Center (TDC) of Pipeline Research Council International, Inc. (PRCI), a PRCI managed facility available for future industry and PHMSA research projects. An ILI pull test facility was designed and constructed as part of this project based on industry state-of-the-art and opportunities for capability improvement. The major ILI technology providers, together with pipeline operator team members, reviewed the TDC sample inventory and developed a series of ILI performance tests illustrating one of multiple possible research objectives, culminating in 16-inch and 24-inch nominal diameter test strings. The ILI technology providers proposed appropriate inspection tools based on the types of the integrity threats in the test strings, a series of pull tests of the provided ILI tools were performed, and the technology providers delivered reports of integrity anomaly location and dimensions for performance evaluation. Quantitative measures of detection and sizing performance were confidentially disclosed to the individual ILI technology providers. For instances where ILI predictions were outside of claimed performance, the vendors were given a limited sample of actual defect data to enable re-analysis, thus demonstrating the potential for improved integrity assessment with validation measurements. In this paper, an evaluation of the ILI data obtained from repeated pull-through testing on the 16 and 24-inch pipeline strings at the TDC is performed. The resulting data was aligned, analyzed, and compared to truth data and the findings of the evaluation are presented.


2014 ◽  
Vol 16 (3) ◽  
pp. 263-280 ◽  
Author(s):  
Elisabeth E. Bennett

The Problem Initial explorations of virtual human resource development (VHRD) were published in the 12(6) issue of Advances, but these articles were only an initial step toward conceptualization. New perspectives on VHRD have developed over the past 4 years, particularly about human resource development’s (HRD) role in the development of new technology. The Solution This article provides a brief overview of existing published literature on VHRD, offers new conceptualizations of HRD’s role with technology development, and introduces the articles in this issue that advance their own new perspectives. This article argues that HRD must adopt new skills and develop explanatory models for growing organizational learning capacity in virtual work. The Stakeholders This article is of interest to practitioners and managers who lead technology projects and work within technology-enabled professional environments, as well as scholars interested in studying VHRD.


2016 ◽  
Vol 14 (2) ◽  
pp. 152-166 ◽  
Author(s):  
Joanne E. McNeish ◽  
Anthony Francescucci ◽  
Ummaha Hazra

Purpose The next phase of hardware technology development is focused on alternative ways to manage and store consumers’ personal content. However, even consumers who have adopted Cloud-based services have demonstrated a reluctance to move all of their personal content into the Cloud and continue to resist giving up local hard drives. This paper aims to investigate the characteristics of local hard drives and the Cloud that lead to simultaneous use. Design/methodology/approach This paper uses content analysis of online comments and ten depth interviews with simultaneous users of local hard drives and the Cloud. Findings Three factors influence the resistance to giving up local hard drives. Simultaneous users utilize local hard drives as a redundancy system and as a way to ensure the permanence of their digital content. They are unsure of the Cloud’s ability to support their content creation, management and storage activities (task-technology fit). Research limitations/implications Study findings are based on qualitative methods and thus the results cannot be considered conclusive. Practical implications The authors speculate that it is unlikely that Cloud-only will fully replace hard drives until these factors are understood and addressed by information technology developers. Cloud service providers may not be aware of how little that users understand the Cloud. In contrast to their certainty and confidence in local hard drives, simultaneous users are confused as to what the Cloud is and how it functions. This uncertainty exacerbates their risk perception and need for control. Originality/value This is the first study exploring simultaneous use of local hard drives and the Cloud with a view to understanding this behaviour in terms of the relative advantage of the incumbent technology over the new technology.


Author(s):  
Hyungtae Kim ◽  
Geonho Kim ◽  
Yunrong Li ◽  
Jinyong Jeong ◽  
Youngdae Kim

Abstract Static Random Access Memory (SRAM) has long been used for a new technology development vehicle because it is sensitive to process defects due to its high density and minimum feature size. In addition, failure location can be accurately predicted because of the highly structured architecture. Thus, fast and accurate Failure Analysis (FA) of the SRAM failure is crucial for the success of new technology learning and development. It is often quite time consuming to identify defects through conventional physical failure analysis techniques. In this paper, we present an advanced defect identification methodology for SRAM bitcell failures with fast speed and high accuracy based on the bitcell transistor analog characteristics from special design for test (DFT) features, Direct Bitcell Access (DBA). This technique has the advantage to shorten FA throughput time due to a time efficient test method and an intuitive failure analysis method based on Electrical Failure Analysis (EFA) without destructive analysis. In addition, all the defects in a wafer can be analyzed and improved simultaneously utilizing the proposed defect identification methodology. Some successful case studies are also discussed to demonstrate the efficiency of the proposed defect identification methodology.


Sign in / Sign up

Export Citation Format

Share Document