scholarly journals Research on Attack Identification Method and Device Method Based on Random Forest Algorithm

2020 ◽  
Vol 1646 ◽  
pp. 012012
Author(s):  
Yang Yu ◽  
Shengyuan Xiao ◽  
Rui Chen ◽  
Yu Du ◽  
Kai Ding ◽  
...  
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Shuhui Yi ◽  
Hongxia Zhu ◽  
Junjie Liu ◽  
Junnan Li

Nonintrusive industrial load identification can accurately acquire the operation data of each load in the plant, which is the benefit of intelligent power management. The identification method of the industrial load is complicated and difficult to be realized due to the difficulty in collecting transient data for modeling, and high-precision measuring equipment is required. Aiming at this situation, the article proposes a nonintrusive industrial load identification method using a random forest algorithm and steady-state waveform. Firstly, by monitoring the change of the industrial load power state, when the load changes and becomes stable, the steady-state waveform is extracted. Due to different electrical characteristics of industrial loads, the current waveform of loads is different to some extent. We can construct characteristic data for each industrial load to construct its own current steady-state waveform. Then, using the high-dimensional data of the steady-state waveform as the sample data, the bootstrap sampling method and the CART algorithm in the random forest algorithm are used to generate multiple decision trees. Finally, the industrial load types are identified by voting multiple decision trees. The actual operating load data of a factory are used as the sample data in the simulation, and the effectiveness and rapidity of the proposed identification algorithm are verified by the combined load method simulation comparison. The simulation results show that the accuracy of the proposed identification algorithm is more than 99%, the identification time is 3.36 s, which is much higher than that of other methods, and the operation time is less than that of other methods. Therefore, the proposed identification algorithm can effectively realize the nonintrusive industrial load identification.


Author(s):  
A.E. Semenov

The method of pedestrian navigation in the cities illustrated by the example of Saint-Petersburg was investigated. The factors influencing people when they choose a route for their walk were determined. Based on acquired factors corresponding data was collected and used to develop model determining attractiveness of a street in the city using Random Forest algorithm. The results obtained shows that routes provided by the method are 14% more attractive and just 6% longer compared with the shortest ones.


2020 ◽  
Vol 15 (S359) ◽  
pp. 40-41
Author(s):  
L. M. Izuti Nakazono ◽  
C. Mendes de Oliveira ◽  
N. S. T. Hirata ◽  
S. Jeram ◽  
A. Gonzalez ◽  
...  

AbstractWe present a machine learning methodology to separate quasars from galaxies and stars using data from S-PLUS in the Stripe-82 region. In terms of quasar classification, we achieved 95.49% for precision and 95.26% for recall using a Random Forest algorithm. For photometric redshift estimation, we obtained a precision of 6% using k-Nearest Neighbour.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sofia Kapsiani ◽  
Brendan J. Howlin

AbstractAgeing is a major risk factor for many conditions including cancer, cardiovascular and neurodegenerative diseases. Pharmaceutical interventions that slow down ageing and delay the onset of age-related diseases are a growing research area. The aim of this study was to build a machine learning model based on the data of the DrugAge database to predict whether a chemical compound will extend the lifespan of Caenorhabditis elegans. Five predictive models were built using the random forest algorithm with molecular fingerprints and/or molecular descriptors as features. The best performing classifier, built using molecular descriptors, achieved an area under the curve score (AUC) of 0.815 for classifying the compounds in the test set. The features of the model were ranked using the Gini importance measure of the random forest algorithm. The top 30 features included descriptors related to atom and bond counts, topological and partial charge properties. The model was applied to predict the class of compounds in an external database, consisting of 1738 small-molecules. The chemical compounds of the screening database with a predictive probability of ≥ 0.80 for increasing the lifespan of Caenorhabditis elegans were broadly separated into (1) flavonoids, (2) fatty acids and conjugates, and (3) organooxygen compounds.


Sign in / Sign up

Export Citation Format

Share Document