scholarly journals Reflection of sound pulses from the boundary of the bubble medium

2020 ◽  
Vol 1677 ◽  
pp. 012073
Author(s):  
I A Ogorodnikov
Keyword(s):  
2021 ◽  
Vol 2057 (1) ◽  
pp. 012032
Author(s):  
I A Ogorodnikov

Abstract The effect of changes in the volume concentration of bubbles in the boundary zone of the bubble medium on the nature of reflection and radiation of the excited bubble medium is studied. The spectral characteristics of the radiation of a bubble medium are obtained at the initial stage of transition radiation and at large times when the radiation is stationary. It is shown that in the initial phase the emission spectrum is broadband and is located in the absorption band of the bubble medium, and at large times the emission spectrum is located outside this band.


Sensors ◽  
2021 ◽  
Vol 21 (1) ◽  
pp. 228
Author(s):  
Idan Fishel ◽  
Yoni Amit ◽  
Neta Shvil ◽  
Anton Sheinin ◽  
Amir Ayali ◽  
...  

During hundreds of millions of years of evolution, insects have evolved some of the most efficient and robust sensing organs, often far more sensitive than their man-made equivalents. In this study, we demonstrate a hybrid bio-technological approach, integrating a locust tympanic ear with a robotic platform. Using an Ear-on-a-Chip method, we manage to create a long-lasting miniature sensory device that operates as part of a bio-hybrid robot. The neural signals recorded from the ear in response to sound pulses, are processed and used to control the robot’s motion. This work is a proof of concept, demonstrating the use of biological ears for robotic sensing and control.


1969 ◽  
Vol 8 (5) ◽  
pp. 507-517
Author(s):  
Akira Nakamura ◽  
Ryoichi Takeuchi

1967 ◽  
Vol 63 (4) ◽  
pp. 1247-1272 ◽  
Author(s):  
Roger Grimshaw

AbstractThe problem considered is that of the diffraction of sound pulses by a plane interface separating two stratified media in each of which the refractive index increases with distance from the interface. Two types of diffraction phenomena occur, glancing ray diffraction and total reflection. The solution is obtained as a series of ‘pulse propagation modes’, using a double transform technique. The main results are some formulae for the pulse field near a diffracted wavefront.


2000 ◽  
Vol 75 (1) ◽  
pp. 37-45 ◽  
Author(s):  
ANNELI HOIKKALA ◽  
SELIINA PÄÄLLYSAHO ◽  
JOUNI ASPI ◽  
JAAKKO LUMME

The males of six species of the Drosophila virilis group (including D. virilis) keep their wings extended while producing a train of sound pulses, where the pulses follow each other without any pause. The males of the remaining five species of the group produce only one sound pulse during each wing extension/vibration, which results in species-specific songs with long pauses (in D. littoralis about 300 ms) between successive sound pulses. Genetic analyses of the differences between the songs of D. virilis and D. littoralis showed that species-specific song traits are affected by genes on the X chromosome, and for the length of pause, also by genes on chromosomes 3 and 4. The X chromosomal genes having a major impact on pulse and pause length were tightly linked with white, apricot and notched marker genes located at the proximal third of the chromosome. A large inversion in D. littoralis, marked by notched, prevents more precise localization of these genes by classical crossing methods.


1979 ◽  
Vol 80 (1) ◽  
pp. 69-81 ◽  
Author(s):  
R. K. JOSEPHSON ◽  
D. YOUNG

1. Body temperatures during singing were measured in the cicada, Cystosoma saundersii Westwood, both in the field and in tethered animals indoors. 2. The temperature of the sound-producing tymbal muscle rises rapidly during singing to reach a plateau approximately 12°C above ambient. This produces a temperature gradient in the abdominal air sac which surrounds the muscle. When singing stops, the tymbal muscle cools exponentially. 3. Heat production during singing, estimated from the cooling curve, is 4.82 cal min−1 g muscle−1. Generation of the same temperature excess in the air sac by an artificial heat source yields an estimated heat production of 54.4 cal min−1 g muscle−1. This discrepancy may be caused by air mixing in the air sac during singing. 4. As temperature rises, tymbal muscle twitch contractions become faster and stronger. This and heat transfer to the thorax cause changes in the song pattern: a marked decrease in the interval between the two sound pulses produced by a single tymbal buckling and a lesser decrease in the interval between bucklings. The fundamental sound period remains unaltered. These effects are consistent with earlier data on sound production. Note: Present address: Department of Developmental and Cell Biology, University of California, Irvine, California 92717, U.S.A.


1998 ◽  
Vol 201 (5) ◽  
pp. 717-730 ◽  
Author(s):  
P J Fonseca ◽  
H-C Bennet Clark

The type 1 echeme of the song of the small European cicada Tympanistalna gastrica consists of a pair of loud IN-OUT pulses followed by a train of soft IN-OUT pulses. In all nine insects investigated, the right and left tymbals buckled inwards and outwards alternately, but the echeme started with the buckling of the right tymbal. Both the inward and the outward buckling movements produced single discrete sound pulses. <P> The loud IN pulses were produced with the tymbal tensor muscle relaxed. They were approximately 10 dB louder than the loud OUT pulses and than the soft IN and OUT pulses. The period between the right loud IN and OUT pulses (3.75+/-0.31 ms) (mean +/- s.d.) was significantly shorter than between the left loud IN and OUT pulses (4.09+/-0.28 ms). The period between the loud IN and OUT pulses was significantly shorter than the period between the soft IN and OUT pulses, which was similar on both sides (mean for the right tymbal 5.54+/-0.20 ms, mean for the left tymbal 5.30+/-0.51 ms). <P> Measured at the tymbal, the power spectrum of the right loud IN pulses showed major components between 4 and 8 kHz as well as around 11.7 kHz. That of the left loud IN pulse had approximately 10 dB less power at 4 kHz and similar power at 7-8 kHz, with a further louder peak at around 10.8 kHz. The loud OUT pulses and all subsequent IN and OUT soft pulses showed very little power at 4 and 8 kHz, but all showed a spectral peak at approximately 13 kHz. The soft OUT pulses had similar pulse envelopes to the preceding IN pulses, which they closely mirrored. <P> Measured at the fourth abdominal sternite, only the right loud IN pulse produced peak power at 4 kHz. The transfer function between the tymbal sound and that at sternite 4 was maximal at 4 kHz for the right loud IN pulse and showed a peak at this frequency for both loud and soft IN and OUT pulses. The 4 kHz components of all pulses, and particularly that of the right loud IN pulse, which has the loudest 4 kHz component, excited sympathetic sound radiation from the abdominal sternite region. <P> Measured at the tympanal opercula, both loud IN pulses produced peaks at 7-8 kHz of similar power. The transfer functions between the tymbal sound and that at the tympanal opercula showed peaks of power at this frequency range for both loud and soft IN and OUT pulses, suggesting that this component excites sympathetic radiation via the tympana. <P> Components of the sound pulses produced by one tymbal are also transmitted via the contralateral tymbal. The pulses transmitted during both loud IN pulses had ragged envelopes, but the soft IN pulses and all OUT pulses were transmitted as clean coherent pulses with slow build-up and slow decay, suggesting that the ipsilateral tymbal excited a sympathetic resonance in the contralateral one. <P> The tymbals of T. gastrica have two unusual features. At the dorsal end of rib 2, there is a horizontal bar that extends anteriorly over rib 3 and posteriorly over rib 1 to the dorsal end of the tymbal plate. This bar appears to couple the three ribs so that they buckle in unison. The resilin sheet at the ventral ends of ribs 1, 2 and 3 was significantly wider, dorso-ventrally, in the right tymbal than in the left in eight insects that were measured (mean right-to-left ratio, 1.37). <P> The asymmetry between the right and left loud IN pulses correlates with the morphological asymmetry of the tymbals. The complexities of the song in T. gastrica appear to result from the preferential excitation of sound radiation from the abdomen surface or via the tympana by components of the distinct pulses produced by the asymmetrical tymbals and from the tymbals themselves. <P> Moribund or fatigued insects were successively unable to produce the right loud pulse and then the left loud pulse. The complex song may in this way act as an honest signal of male fitness.


Sign in / Sign up

Export Citation Format

Share Document