scholarly journals A comparative study of several boundary conditions on the body surface for the meshless electromagnetic scattering method

2020 ◽  
Vol 1678 ◽  
pp. 012056
Author(s):  
Yukun Gao ◽  
Hongquan Chen ◽  
Shengguan Xu ◽  
Jiale Zhang ◽  
Cheng Cao ◽  
...  
1996 ◽  
Vol 40 (04) ◽  
pp. 269-277
Author(s):  
G. X. Wu ◽  
T. Miloh ◽  
G. Zilman

The problem of a hydrofoil moving near an interface of two fluids of different densities is analyzed. An iteration scheme is proposed which imposes the boundary conditions on the body surface and on the interface alternately. The numerical solution is obtained by using the linearized theory and a Glauert-type expansion for the vortex distribution. Results are provided for various cases with different densities and different speeds.


1982 ◽  
Vol 15 (3) ◽  
pp. 241-248 ◽  
Author(s):  
Seiichi Toyama ◽  
Keiko Suzuki ◽  
Masao Koyama ◽  
Koji Yoshino ◽  
Kiyoshi Fujimoto

1990 ◽  
Vol 29 (04) ◽  
pp. 282-288 ◽  
Author(s):  
A. van Oosterom

AbstractThis paper introduces some levels at which the computer has been incorporated in the research into the basis of electrocardiography. The emphasis lies on the modeling of the heart as an electrical current generator and of the properties of the body as a volume conductor, both playing a major role in the shaping of the electrocardiographic waveforms recorded at the body surface. It is claimed that the Forward-Problem of electrocardiography is no longer a problem. Several source models of cardiac electrical activity are considered, one of which can be directly interpreted in terms of the underlying electrophysiology (the depolarization sequence of the ventricles). The importance of using tailored rather than textbook geometry in inverse procedures is stressed.


Author(s):  
Shirazu I. ◽  
Theophilus. A. Sackey ◽  
Elvis K. Tiburu ◽  
Mensah Y. B. ◽  
Forson A.

The relationship between body height and body weight has been described by using various terms. Notable among them is the body mass index, body surface area, body shape index and body surface index. In clinical setting the first descriptive parameter is the BMI scale, which provides information about whether an individual body weight is proportionate to the body height. Since the development of BMI, two other body parameters have been developed in an attempt to determine the relationship between body height and weight. These are the body surface area (BSA) and body surface index (BSI). Generally, these body parameters are described as clinical health indicators that described how healthy an individual body response to the other internal organs. The aim of the study is to discuss the use of BSI as a better clinical health indicator for preclinical assessment of body-organ/tissue relationship. Hence organ health condition as against other body composition. In addition the study is `also to determine the best body parameter the best predict other parameters for clinical application. The model parameters are presented as; modeled height and weight; modelled BSI and BSA, BSI and BMI and modeled BSA and BMI. The models are presented as clinical application software for comfortable working process and designed as GUI and CAD for use in clinical application.


Humaniora ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 83-90
Author(s):  
Anak Agung Ayu Wulandari ◽  
Ade Ariyani Sari Fajarwati

The research would look further at the representation of the human body in both Balinese and Javanese traditional houses and compared the function and meaning of each part. To achieve the research aim, which was to evaluate and compare the representation of the human body in Javanese and Balinese traditional houses, a qualitative method through literature and descriptive analysis study was conducted. A comparative study approach would be used with an in-depth comparative study. It would revealed not only the similarities but also the differences between both subjects. The research shows that both traditional houses represent the human body in their way. From the architectural drawing top to bottom, both houses show the same structure that is identical to the human body; head at the top, followed by the body, and feet at the bottom. However, the comparative study shows that each area represents a different meaning. The circulation of the house is also different, while the Balinese house is started with feet and continued to body and head area. Simultaneously, the Javanese house is started with the head, then continued to body, and feet area.


Sign in / Sign up

Export Citation Format

Share Document