scholarly journals Dynamics of the movement of the descent vehicle in the atmosphere of Mars with the use of inflatable brakes in the lower atmosphere

2021 ◽  
Vol 1786 (1) ◽  
pp. 012018
Author(s):  
Danhe Chen ◽  
Léo Richier ◽  
Vsevolod V Koryanov
2021 ◽  
Vol 13 (7) ◽  
pp. 1335
Author(s):  
Ronald Souza ◽  
Luciano Pezzi ◽  
Sebastiaan Swart ◽  
Fabrício Oliveira ◽  
Marcelo Santini

The Brazil–Malvinas Confluence (BMC) is one of the most dynamical regions of the global ocean. Its variability is dominated by the mesoscale, mainly expressed by the presence of meanders and eddies, which are understood to be local regulators of air-sea interaction processes. The objective of this work is to study the local modulation of air-sea interaction variables by the presence of either a warm (ED1) and a cold core (ED2) eddy, present in the BMC, during September to November 2013. The translation and lifespans of both eddies were determined using satellite-derived sea level anomaly (SLA) data. Time series of satellite-derived surface wind data, as well as these and other meteorological variables, retrieved from ERA5 reanalysis at the eddies’ successive positions in time, allowed us to investigate the temporal modulation of the lower atmosphere by the eddies’ presence along their translation and lifespan. The reanalysis data indicate a mean increase of 78% in sensible and 55% in latent heat fluxes along the warm eddy trajectory in comparison to the surrounding ocean of the study region. Over the cold core eddy, on the other hand, we noticed a mean reduction of 49% and 25% in sensible and latent heat fluxes, respectively, compared to the adjacent ocean. Additionally, a field campaign observed both eddies and the lower atmosphere from ship-borne observations before, during and after crossing both eddies in the study region during October 2013. The presence of the eddies was imprinted on several surface meteorological variables depending on the sea surface temperature (SST) in the eddy cores. In situ oceanographic and meteorological data, together with high frequency micrometeorological data, were also used here to demonstrate that the local, rather than the large scale forcing of the eddies on the atmosphere above, is, as expected, the principal driver of air-sea interaction when transient atmospheric systems are stable (not actively varying) in the study region. We also make use of the in situ data to show the differences (biases) between bulk heat flux estimates (used on atmospheric reanalysis products) and eddy covariance measurements (taken as “sea truth”) of both sensible and latent heat fluxes. The findings demonstrate the importance of short-term changes (minutes to hours) in both the atmosphere and the ocean in contributing to these biases. We conclude by emphasizing the importance of the mesoscale oceanographic structures in the BMC on impacting local air-sea heat fluxes and the marine atmospheric boundary layer stability, especially under large scale, high-pressure atmospheric conditions.


2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Mani Sivakandan ◽  
Yuichi Otsuka ◽  
Priyanka Ghosh ◽  
Hiroyuki Shinagawa ◽  
Atsuki Shinbori ◽  
...  

AbstractThe total electron content (TEC) data derived from the GAIA (Ground-to-topside model of Atmosphere Ionosphere for Aeronomy) is used to study the seasonal and longitudinal variation of occurrence of medium-scale traveling ionospheric disturbances (MSTIDs) during daytime (09:00–15:00 LT) for the year 2011 at eight locations in northern and southern hemispheres, and the results are compared with ground-based Global Positioning System (GPS)-TEC. To derive TEC variations caused by MSTIDs from the GAIA (GPS) data, we obtained detrended TEC by subtracting 2-h (1-h) running average from the TEC, and calculated standard deviation of the detrended TEC in 2 h (1 h). MSTID activity was defined as a ratio of the standard deviation to the averaged TEC. Both GAIA simulation and GPS observations data show that daytime MSTID activities in the northern and southern hemisphere (NH and SH) are higher in winter than in other seasons. From the GAIA simulation, the amplitude of the meridional wind variations, which could be representative of gravity waves (GWs), shows two peaks in winter and summer. The winter peak in the amplitude of the meridional wind variations coincides with the winter peak of the daytime MSTIDs, indicating that the high GW activity is responsible for the high MSTID activity. On the other hand, the MSTID activity does not increase in summer. This is because the GWs in the thermosphere propagate poleward in summer, and equatorward in winter, and the equatorward-propagating GWs cause large plasma density perturbations compared to the poleward-propagating GWs. Longitudinal variation of daytime MSTID activity in winter is seen in both hemispheres. The MSTID activity during winter in the NH is higher over Japan than USA, and the MSTID activity during winter in the SH is the highest in South America. In a nutshell, GAIA can successfully reproduce the seasonal and longitudinal variation of the daytime MSTIDs. This study confirms that GWs cause the daytime MSTIDs in GAIA and amplitude and propagation direction of the GWs control the noted seasonal variation. GW activities in the middle and lower atmosphere cause the longitudinal variation.


2021 ◽  
Vol 13 (2) ◽  
pp. 313
Author(s):  
Yongfang Xu ◽  
Zhaohui Lin ◽  
Chenglai Wu

Central Asia is prone to wildfires, but the relationship between wildfires and climatic factors in this area is still not clear. In this study, the spatiotemporal variation in wildfire activities across Central Asia during 1997–2016 in terms of the burned area (BA) was investigated with Global Fire Emission Database version 4s (GFED4s). The relationship between BA and climatic factors in the region was also analyzed. The results reveal that more than 90% of the BA across Central Asia is located in Kazakhstan. The peak BA occurs from June to September, and remarkable interannual variation in wildfire activities occurs in western central Kazakhstan (WCKZ). At the interannual scale, the BA is negatively correlated with precipitation (correlation coefficient r = −0.66), soil moisture (r = −0.68), and relative humidity (r = −0.65), while it is positively correlated with the frequency of hot days (r = 0.37) during the burning season (from June to September). Composite analysis suggests that the years in which the BA is higher are generally associated with positive geopotential height anomalies at 500 hPa over the WCKZ region, which lead to the strengthening of the downdraft at 500 hPa and the weakening of westerlies at 850 hPa over the region. The weakened westerlies suppress the transport of water vapor from the Atlantic Ocean to the WCKZ region, resulting in decreased precipitation, soil moisture, and relative humidity in the lower atmosphere over the WCKZ region; these conditions promote an increase in BA throughout the region. Moreover, the westerly circulation index is positively correlated (r = 0.53) with precipitation anomalies and negatively correlated (r = −0.37) with BA anomalies in the WCKZ region during the burning season, which further underscores that wildfires associated with atmospheric circulation systems are becoming an increasingly important component of the relationship between climate and wildfire.


Many years ago it was suggested by Hartley* that the limit of the solar spectrum towards the ultra-violet was attributable to absorption by atmospheric ozone, which, as he showed, would give rise to a general absorption beginning at about the place where the solar spectrum ends. In a recent paper by Prof. A. Fowler and myself,† the evidence for this view was very much strengthened. For it was shown that just on the limits of extinction the solar spectrum shows a series of narrow absorption bands which are eventually merged in the general absorption, and these narrow bands are precisely reproduced in the absorption spectrum of ozone. For my own part, I do not feel any doubt that ozone in the atmosphere is the effective cause limiting the solar spectrum.


Icarus ◽  
2015 ◽  
Vol 253 ◽  
pp. 149-155 ◽  
Author(s):  
Vladimir A. Krasnopolsky

2016 ◽  
Vol 29 (3) ◽  
pp. 1219-1230 ◽  
Author(s):  
Yunying Li ◽  
Minghua Zhang

Abstract Cumulus (Cu) can transport heat and water vapor from the boundary layer to the free atmosphere, leading to the redistribution of heat and moist energy in the lower atmosphere. This paper uses the fine-resolution CloudSat–CALIPSO product to characterize Cu over the Tibetan Plateau (TP). It is found that Cu is one of the dominant cloud types over the TP in the northern summer. The Cu event frequency, defined as Cu occurring within 50-km segments, is 54% over the TP in the summer, which is much larger over the TP than in its surrounding regions. The surface wind vector converging at the central TP and the topographic forcing provide the necessary moisture and dynamical lifting of convection over the TP. The structure of the atmospheric moist static energy shows that the thermodynamical environment over the northern TP can be characterized as having weak instability, a shallow layer of instability, and lower altitudes for the level of free convection. The diurnal variation of Cu with frequency peaks during the daytime confirms the surface thermodynamic control on Cu formation over the TP. This study offers insights into how surface heat is transported to the free troposphere over the TP and provides an observational test of climate models in simulating shallow convection over the TP.


Sign in / Sign up

Export Citation Format

Share Document