scholarly journals Effect of Bolt Hole Size on Static Stress and Fatigue Life of UAV Main Landing Gear Using Numerical Simulation

2021 ◽  
Vol 1811 (1) ◽  
pp. 012083
Author(s):  
L A N Wibawa
Author(s):  
Shaolin Chen ◽  
Hong Zhang ◽  
Liaoping Hu ◽  
Guangqing He ◽  
Fen Lei ◽  
...  

The fatigue life of turbine housing is an important index to measure the reliability of a radial turbocharger. The increase in turbine inlet temperatures in the last few years has resulted in a decrease in the fatigue life of turbine housing. A simulation method and experimental verification are required to predict the life of a turbine housing in the early design and development process precisely. The temperature field distribution of the turbine housing is calculated using the steady-state bidirectional coupled conjugate heat transfer method. Next, the temperature field results are considered as the boundary for calculating the turbine housing temperature and thermomechanical strain, and then, the thermomechanical strain of the turbine housing is determined. Infrared and digital image correlations are used to measure the turbine housing surface temperature and total thermomechanical strain. Compared to the numerical solution, the maximum temperature RMS (Root Mean Square) error of the monitoring point in the monitoring area is only 3.5%; the maximum strain RMS error reached 11%. Experimental results of temperature field test and strain measurement test show that the testing temperature and total strain results are approximately equal to the solution of the numerical simulation. Based on the comparison between the numerical calculation and experimental results, the numerical simulation and test results were found to be in good agreement. The experimental and simulation results of this method can be used as the temperature and strain (stress) boundaries for subsequent thermomechanical fatigue (TMF) simulation analysis of the turbine housing.


2011 ◽  
Vol 421 ◽  
pp. 739-742
Author(s):  
Li Li Yu ◽  
Jin Hua Zhao ◽  
Quan Zhou Zhao ◽  
Chun Hui

In this paper the characteristics of acoustic field for miniature cylindrical focused transducer with a hole was studied in order to instruct the optimization design of the transducer for both realizing visualization and improving the treatment effect. Then the acoustic field was simulated numerically with different parameters of hole. It is found that position of focus is almost unchanged but acoustic pressure amplitude declines. In addition the performance of transverse focusing for the focal plane and levels length of acoustic pressure are lowered. Moreover, if size of transducer and rigidity of material permit, the area and ratio of width to height for the hole should be reduced appropriately to improve the focusing properties. And it is deduced that area and ratio of width to height for the cylinder can be increased to achieve the same therapeutic effect with a fixed hole size.


Author(s):  
Zhifei Guo ◽  
Peiqing Liu ◽  
Jin Zhang ◽  
Hao Guo

This paper is aimed at researching the interaction between aeroacoustic noise radiated from a rectangular cavity (gear bay) and from landing gear. It is a complicated flow-induced noise problem, involving the nonlinear, unsteady evolution of the turbulent structure inside the airflow bypassing the landing gear and the cavity. The generation and radiation mechanism of aeroacoustic noise are also concerned. In fact, it is a problem about the nonlinear interaction between the vortices shedding from the boundary layer of bluff bodies and the cavity-limited shear layer. To simplify this issue, a two-wheel landing gear named LAGOON is chosen as the landing gear model. The unsteady flow field and aerodynamic noise from it is simulated by applying the commercial software ANSYS Fluent. Good agreement is achieved between the numerical simulation and wind tunnel measurements in terms of the aerodynamic and aeroacoustic results. According to the size of LAGOON, a simple rectangular cavity is designed as the landing gear bay. Both the cavity combined with LAGOON and the cavity alone are simulated and compared. The results show that under the blocking effect of a strut, most small pieces of vortices at the trailing edge of the cavity bottom would dissipate rather than move forward along with the backflow, leading to the correlation of cavity resonance being more contrasting and increasing its amplitude. The blockage effect induced by rear wall could also enhance the turbulence kinetic energy at the wake of the strut, thus increasing the low-frequency noise radiated from the strut and cavity.


Materials ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 5536
Author(s):  
David Curto-Cárdenas ◽  
Jose Calaf-Chica ◽  
Pedro Miguel Bravo Díez ◽  
Mónica Preciado Calzada ◽  
Maria-Jose Garcia-Tarrago

Cold expansion technology is an extended method used in aeronautics to increase fatigue life of holes and hence extending inspection intervals. During the cold expansion process, a mechanical mandrel is forced to pass along the hole generating compressive residual hoop stresses. The most widely accepted geometry for this mandrel is the tapered one and simpler options like balls have generally been rejected based on the non-conforming residual hoop stresses derived from their use. In this investigation a novelty process using multiple balls with incremental interference, instead of a single one, was simulated. Experimental tests were performed to validate the finite element method (FEM) models and residual hoop stresses from multiple balls simulation were compared with one ball and tapered mandrel simulations. Results showed that the use of three incremental balls significantly reduced the magnitude of non-conforming residual hoop stresses and the extension of these detrimental zone.


2015 ◽  
Vol 750 ◽  
pp. 153-159
Author(s):  
Jie Dong ◽  
Xue Dong Chen ◽  
Bing Wang ◽  
Wei He Guan ◽  
Tie Cheng Yang ◽  
...  

The upper and lower courses of sea oil and gas exploitationare connected by submarine pipeline which is called life line project. Free span often occurs because of the unevenness and scour of seabed, and fatigue is one of the main failure modes.In this paper, with the finite element numerical simulation method, based on the harmonic response analysis, the research on the structural response of free span under the vibration induced by vortex was investigated, and the effect of the factors such as flow velocity, length of free span. According to the analysis results,the fatigue life of free span was evaluated.


2019 ◽  
Vol 894 ◽  
pp. 29-33
Author(s):  
Luong Quoc Viet ◽  
Jai Hyuk Hwang

The magnetorheological (MR) damper is the newest approach to replace the traditional passive damper which cannot change their dynamics in response to different operating conditions of the aircraft landing gear. This paper presents the simulation study of a semi-active controller for a landing gear equipped MR damper. Furthermore, a new method combined skyhook control with force control, called hybrid control, is developed to improve the performance of the MR damper landing gear. Finally, the numerical simulation result of the landing gear using SIMSCAPE-Simulink is discussed.


Sign in / Sign up

Export Citation Format

Share Document