scholarly journals Cardiovascular Disease Detection using Artificial Immune System and other Machine Learning Models

2021 ◽  
Vol 1950 (1) ◽  
pp. 012032
Author(s):  
Ishan Gupta ◽  
Ruchir Shangle ◽  
Vishwas Latiyan ◽  
Umang Soni
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Moojung Kim ◽  
Young Jae Kim ◽  
Sung Jin Park ◽  
Kwang Gi Kim ◽  
Pyung Chun Oh ◽  
...  

Abstract Background Annual influenza vaccination is an important public health measure to prevent influenza infections and is strongly recommended for cardiovascular disease (CVD) patients, especially in the current coronavirus disease 2019 (COVID-19) pandemic. The aim of this study is to develop a machine learning model to identify Korean adult CVD patients with low adherence to influenza vaccination Methods Adults with CVD (n = 815) from a nationally representative dataset of the Fifth Korea National Health and Nutrition Examination Survey (KNHANES V) were analyzed. Among these adults, 500 (61.4%) had answered "yes" to whether they had received seasonal influenza vaccinations in the past 12 months. The classification process was performed using the logistic regression (LR), random forest (RF), support vector machine (SVM), and extreme gradient boosting (XGB) machine learning techniques. Because the Ministry of Health and Welfare in Korea offers free influenza immunization for the elderly, separate models were developed for the < 65 and ≥ 65 age groups. Results The accuracy of machine learning models using 16 variables as predictors of low influenza vaccination adherence was compared; for the ≥ 65 age group, XGB (84.7%) and RF (84.7%) have the best accuracies, followed by LR (82.7%) and SVM (77.6%). For the < 65 age group, SVM has the best accuracy (68.4%), followed by RF (64.9%), LR (63.2%), and XGB (61.4%). Conclusions The machine leaning models show comparable performance in classifying adult CVD patients with low adherence to influenza vaccination.


BMJ ◽  
2020 ◽  
pp. m3919
Author(s):  
Yan Li ◽  
Matthew Sperrin ◽  
Darren M Ashcroft ◽  
Tjeerd Pieter van Staa

AbstractObjectiveTo assess the consistency of machine learning and statistical techniques in predicting individual level and population level risks of cardiovascular disease and the effects of censoring on risk predictions.DesignLongitudinal cohort study from 1 January 1998 to 31 December 2018.Setting and participants3.6 million patients from the Clinical Practice Research Datalink registered at 391 general practices in England with linked hospital admission and mortality records.Main outcome measuresModel performance including discrimination, calibration, and consistency of individual risk prediction for the same patients among models with comparable model performance. 19 different prediction techniques were applied, including 12 families of machine learning models (grid searched for best models), three Cox proportional hazards models (local fitted, QRISK3, and Framingham), three parametric survival models, and one logistic model.ResultsThe various models had similar population level performance (C statistics of about 0.87 and similar calibration). However, the predictions for individual risks of cardiovascular disease varied widely between and within different types of machine learning and statistical models, especially in patients with higher risks. A patient with a risk of 9.5-10.5% predicted by QRISK3 had a risk of 2.9-9.2% in a random forest and 2.4-7.2% in a neural network. The differences in predicted risks between QRISK3 and a neural network ranged between –23.2% and 0.1% (95% range). Models that ignored censoring (that is, assumed censored patients to be event free) substantially underestimated risk of cardiovascular disease. Of the 223 815 patients with a cardiovascular disease risk above 7.5% with QRISK3, 57.8% would be reclassified below 7.5% when using another model.ConclusionsA variety of models predicted risks for the same patients very differently despite similar model performances. The logistic models and commonly used machine learning models should not be directly applied to the prediction of long term risks without considering censoring. Survival models that consider censoring and that are explainable, such as QRISK3, are preferable. The level of consistency within and between models should be routinely assessed before they are used for clinical decision making.


2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
I Korsakov ◽  
A Gusev ◽  
T Kuznetsova ◽  
D Gavrilov ◽  
R Novitskiy

Abstract Abstract Background Advances in precision medicine will require an increasingly individualized prognostic evaluation of patients in order to provide the patient with appropriate therapy. The traditional statistical methods of predictive modeling, such as SCORE, PROCAM, and Framingham, according to the European guidelines for the prevention of cardiovascular disease, not adapted for all patients and require significant human involvement in the selection of predictive variables, transformation and imputation of variables. In ROC-analysis for prediction of significant cardiovascular disease (CVD), the areas under the curve for Framingham: 0.62–0.72, for SCORE: 0.66–0.73 and for PROCAM: 0.60–0.69. To improve it, we apply for approaches to predict a CVD event rely on conventional risk factors by machine learning and deep learning models to 10-year CVD event prediction by using longitudinal electronic health record (EHR). Methods For machine learning, we applied logistic regression (LR) and recurrent neural networks with long short-term memory (LSTM) units as a deep learning algorithm. We extract from longitudinal EHR the following features: demographic, vital signs, diagnoses (ICD-10-cm: I21-I22.9: I61-I63.9) and medication. The problem in this step, that near 80 percent of clinical information in EHR is “unstructured” and contains errors and typos. Missing data are important for the correct training process using by deep learning & machine learning algorithm. The study cohort included patients between the ages of 21 to 75 with a dynamic observation window. In total, we got 31517 individuals in the dataset, but only 3652 individuals have all features or missing features values can be easy to impute. Among these 3652 individuals, 29.4% has a CVD, mean age 49.4 years, 68,2% female. Evaluation We randomly divided the dataset into a training and a test set with an 80/20 split. The LR was implemented with Python Scikit-Learn and the LSTM model was implemented with Keras using Tensorflow as the backend. Results We applied machine learning and deep learning models using the same features as traditional risk scale and longitudinal EHR features for CVD prediction, respectively. Machine learning model (LR) achieved an AUROC of 0.74–0.76 and deep learning (LSTM) 0.75–0.76. By using features from EHR logistic regression and deep learning models improved the AUROC to 0.78–0.79. Conclusion The machine learning models outperformed a traditional clinically-used predictive model for CVD risk prediction (i.e. SCORE, PROCAM, and Framingham equations). This approach was used to create a clinical decision support system (CDSS). It uses both traditional risk scales and models based on neural networks. Especially important is the fact that the system can calculate the risks of cardiovascular disease automatically and recalculate immediately after adding new information to the EHR. The results are delivered to the user's personal account.


Author(s):  
M Preethi ◽  
J Selvakumar

This paper describes various methods of data mining, big data and machine learning models for predicting the heart disease. Data mining and machine learning plays an important role in building an important model for medical system to predict heart disease or cardiovascular disease. Medical experts can help the patients by detecting the cardiovascular disease before occurring. Now-a-days heart disease is one of the most significant causes of fatality. The prediction of heart disease is a critical challenge in the clinical area. But time to time, several techniques are discovered to predict the heart disease in data mining. In this survey paper, many techniques were described for predicting the heart disease.


2017 ◽  
Vol 26 (03) ◽  
pp. 1750009 ◽  
Author(s):  
Dionisios N. Sotiropoulos ◽  
George A. Tsihrintzis

This paper focuses on a special category of machine learning problems arising in cases where the set of available training instances is significantly biased towards a particular class of patterns. Our work addresses the so-called Class Imbalance Problem through the utilization of an Artificial Immune System-(AIS)based classification algorithm which encodes the inherent ability of the Adaptive Immune System to mediate the exceptionally imbalanced “self” / “non-self” discrimination process. From a computational point of view, this process constitutes an extremely imbalanced pattern classification task since the vast majority of molecular patterns pertain to the “non-self” space. Our work focuses on investigating the effect of the class imbalance problem on the AIS-based classification algorithm by assessing its relative ability to deal with extremely skewed datasets when compared against two state-of-the-art machine learning paradigms such as Support Vector Machines (SVMs) and Multi-Layer Perceptrons (MLPs). To this end, we conducted a series of experiments on a music-related dataset where a small fraction of positive samples was to be recognized against the vast volume of negative samples. The results obtained indicate that the utilized bio-inspired classifier outperforms SVMs in detecting patterns from the minority class while its performance on the same task is competently close to the one exhibited by MLPs. Our findings suggest that the AIS-based classifier relies on its intrinsic resampling and class-balancing functionality in order to address the class imbalance problem.


Sign in / Sign up

Export Citation Format

Share Document