scholarly journals Application of Computer Vision Media Simulation Technology in Distance Education of New Generation Labor Productivity

2021 ◽  
Vol 1992 (4) ◽  
pp. 042044
Author(s):  
Qiulan Zhao ◽  
Zhuoya Li
Author(s):  
Maksim Sharabov ◽  
Georgi Tsochev

This article presents a brief overview of the effect of new technologies, how they are changing the manufacturing process, and how the machines are starting to get a lot smarter thanks to the artificial intelligence. The focus is over the examination of Industry 4.0 and how it revolutionized the whole manufacturing segment and what promise of a better, more efficient future it brings. This analysis focuses primarily on how artificial intelligence is integrated, what benefits it brings, and how big of an improvement it is over basic programming. Part of the research is based on 771 publications tracked over the past three to five years. Publications are within some of the well-known databases Scopus, Web of Science, and IEEE. We will examine the basic use case scenarios where AI is crucially needed and how a new generation of the factory can look and feel like a living human being. Keywords: Industry 4.0, artificial intelligence, predictive analytics, predictive maintenance, industrial robotics, computer vision.


Author(s):  
Tao Gao

Stereo video object segmentation is a critical technology of the new generation of video coding, video retrieval and other emerging interactive multimedia fields. Determinations of distinctive depth of a frame features have become more popular in everyday life for automation industries like machine vision and computer vision technologies. This paper examines the evaluation of depth cues through dense of two frame stereo correspondence method. Experimental results show that the method can segment the stationary and moving objects with better accuracy and robustness. The contributions have higher accuracy in matching and reducing time of convergence.


2020 ◽  
pp. 71-85
Author(s):  
A.V. Shymchenko ◽  
◽  
E.O. Kasyanenko

Researched is the problem, connected with the fact, that due to the growing interest in attracting the model of electronic distance education, it is relevant to assess the capabilities of digital tools and electronic educational platforms in the training of highly qualified specialists. Consideration of systems and platforms of electronic distance education that are in demand within the framework of the implementation of higher education programs allows us to come to the conclusion about the active use of video, audio, text and graphic methods of presenting educational information. At the same time, the results of the completed review and analysis of the requirements for a number of higher education areas demonstrate the need to form students' applied skills of physical labor. However, the absence of a kinesthetic way of perceiving information does not allow to properly consider existing solutions in the field of distance education as an effective alternative to the traditional “face-to-face” interaction between a student and a teacher in the framework of laboratory and practical training sessions. The obtained conclusion reflects the presence of a significant limitation for the preparation of a number of specialties exclusively through e-distance learning tools. Overcoming this limitation is possible by attracting new solutions based on modern digital technologies, such as virtual reality (VR), cloud computing and new generation telecommunications technologies. The potentialities of such solutions were compared with the capabilities of virtual simulators and laboratories used today. On the other hand, possible solutions were assessed from the standpoint of existing risks and limitations associated primarily with overestimated expectations for the effectiveness of these technologies.


Author(s):  
D. Cherns

The use of high resolution electron microscopy (HREM) to determine the atomic structure of grain boundaries and interfaces is a topic of great current interest. Grain boundary structure has been considered for many years as central to an understanding of the mechanical and transport properties of materials. Some more recent attention has focussed on the atomic structures of metalsemiconductor interfaces which are believed to control electrical properties of contacts. The atomic structures of interfaces in semiconductor or metal multilayers is an area of growing interest for understanding the unusual electrical or mechanical properties which these new materials possess. However, although the point-to-point resolutions of currently available HREMs, ∼2-3Å, appear sufficient to solve many of these problems, few atomic models of grain boundaries and interfaces have been derived. Moreover, with a new generation of 300-400kV instruments promising resolutions in the 1.6-2.0 Å range, and resolutions better than 1.5Å expected from specialist instruments, it is an appropriate time to consider the usefulness of HREM for interface studies.


Author(s):  
Jorge Perdigao

In 1955, Buonocore introduced the etching of enamel with phosphoric acid. Bonding to enamel was created by mechanical interlocking of resin tags with enamel prisms. Enamel is an inert tissue whose main component is hydroxyapatite (98% by weight). Conversely, dentin is a wet living tissue crossed by tubules containing cellular extensions of the dental pulp. Dentin consists of 18% of organic material, primarily collagen. Several generations of dentin bonding systems (DBS) have been studied in the last 20 years. The dentin bond strengths associated with these DBS have been constantly lower than the enamel bond strengths. Recently, a new generation of DBS has been described. They are applied in three steps: an acid agent on enamel and dentin (total etch technique), two mixed primers and a bonding agent based on a methacrylate resin. They are supposed to bond composite resin to wet dentin through dentin organic component, forming a peculiar blended structure that is part tooth and part resin: the hybrid layer.


Author(s):  
S. J. Krause ◽  
W.W. Adams ◽  
S. Kumar ◽  
T. Reilly ◽  
T. Suziki

Scanning electron microscopy (SEM) of polymers at routine operating voltages of 15 to 25 keV can lead to beam damage and sample image distortion due to charging. Imaging polymer samples with low accelerating voltages (0.1 to 2.0 keV), at or near the “crossover point”, can reduce beam damage, eliminate charging, and improve contrast of surface detail. However, at low voltage, beam brightness is reduced and image resolution is degraded due to chromatic aberration. A new generation of instruments has improved brightness at low voltages, but a typical SEM with a tungsten hairpin filament will have a resolution limit of about 100nm at 1keV. Recently, a new field emission gun (FEG) SEM, the Hitachi S900, was introduced with a reported resolution of 0.8nm at 30keV and 5nm at 1keV. In this research we are reporting the results of imaging coated and uncoated polymer samples at accelerating voltages between 1keV and 30keV in a tungsten hairpin SEM and in the Hitachi S900 FEG SEM.


Author(s):  
Thomas J. Deerinck ◽  
Maryann E. Martone ◽  
Varda Lev-Ram ◽  
David P. L. Green ◽  
Roger Y. Tsien ◽  
...  

The confocal laser scanning microscope has become a powerful tool in the study of the 3-dimensional distribution of proteins and specific nucleic acid sequences in cells and tissues. This is also proving to be true for a new generation of high contrast intermediate voltage electron microscopes (IVEM). Until recently, the number of labeling techniques that could be employed to allow examination of the same sample with both confocal and IVEM was rather limited. One method that can be used to take full advantage of these two technologies is fluorescence photooxidation. Specimens are labeled by a fluorescent dye and viewed with confocal microscopy followed by fluorescence photooxidation of diaminobenzidine (DAB). In this technique, a fluorescent dye is used to photooxidize DAB into an osmiophilic reaction product that can be subsequently visualized with the electron microscope. The precise reaction mechanism by which the photooxidation occurs is not known but evidence suggests that the radiationless transfer of energy from the excited-state dye molecule undergoing the phenomenon of intersystem crossing leads to the formation of reactive oxygen species such as singlet oxygen. It is this reactive oxygen that is likely crucial in the photooxidation of DAB.


Sign in / Sign up

Export Citation Format

Share Document