scholarly journals The Internet-of-Buildings (IoB) — Digital twin convergence of wearable and IoT data with GIS/BIM

2021 ◽  
Vol 2042 (1) ◽  
pp. 012041
Author(s):  
Clayton Miller ◽  
Mahmoud Abdelrahman ◽  
Adrian Chong ◽  
Filip Biljecki ◽  
Matias Quintana ◽  
...  

Abstract Internet-of-Things (IoT) devices in buildings and wearable technologies for occupants are quickly becoming widespread. These technologies provide copious amounts of high-quality temporal data pertaining to indoor and outdoor environmental quality, comfort, and energy consumption. However, a barrier to their use in many applications is the lack of spatial context in the built environment. Adding Building Information Models (BIM) and Geographic Information Systems (GIS) to these temporal sources unleashes potential. We call this data convergence the Internet-of-Buildings or IoB. In this paper, a digital twin case study of data intersection from various systems is outlined. Initial insights are discussed for an experiment with 17 participants that focused on the collection of occupant subjective feedback to characterize indoor comfort. The results illustrate the ability to capture data from wearables in the context of a BIM data environment.

2019 ◽  
Vol 17 (3) ◽  
pp. 301-316 ◽  
Author(s):  
Marjan Sadeghi ◽  
Jonathan Weston Elliott ◽  
Nick Porro ◽  
Kelly Strong

PurposeThis paper aims to represent the results of a case study to establish a building information model (BIM)-enabled workflow to capture and retrieve facility information to deliver integrated handover deliverables.Design/methodology/approachThe Building Handover Information Model (BHIM) framework proposed herein is contextualized given the Construction Operation Information Exchange (COBie) and the level of development schema. The process uses Autodesk Revit as the primary BIM-authoring tool and Dynamo as an add-in for extending Revit’s parametric functionality, BHIM validation, information retrieval and documentation in generating operation and maintenance (O&M) deliverables in the end-user requested format.FindingsGiven the criticality of semantics for model elements in the BHIM and for appropriate interoperability in BIM collaboration, each discipline should establish model development and exchange protocols that define the elements, geometrical and non-geometrical information requirements and acceptable software applications early in the design phase. In this case study, five information categories (location, specifications, warranty, maintenance instructions and Construction Specifications Institute MasterFormat division) were identified as critical for model elements in the BHIM for handover purposes.Originality/valueDesign- and construction-purposed BIM is a standard platform in collaborative architecture, engineering and construction practice, and the models are available for many recently constructed facilities. However, interoperability issues drastically restrict implementation of these models in building information handover and O&M. This study provides essential input regarding BIM exchange protocols and collaborative BIM libraries for handover purposes in collaborative BIM development.


Sensors ◽  
2019 ◽  
Vol 19 (19) ◽  
pp. 4121 ◽  
Author(s):  
Alberto Giaretta ◽  
Nicola Dragoni ◽  
Fabio Massacci

Cybersecurity is one of the biggest challenges in the Internet of Things (IoT) domain, as well as one of its most embarrassing failures. As a matter of fact, nowadays IoT devices still exhibit various shortcomings. For example, they lack secure default configurations and sufficient security configurability. They also lack rich behavioural descriptions, failing to list provided and required services. To answer this problem, we envision a future where IoT devices carry behavioural contracts and Fog nodes store network policies. One requirement is that contract consistency must be easy to prove. Moreover, contracts must be easy to verify against network policies. In this paper, we propose to combine the security-by-contract (S × C) paradigm with Fog computing to secure IoT devices. Following our previous work, first we formally define the pillars of our proposal. Then, by means of a running case study, we show that we can model communication flows and prevent information leaks. Last, we show that our contribution enables a holistic approach to IoT security, and that it can also prevent unexpected chains of events.


2019 ◽  
Vol 295 ◽  
pp. 02010 ◽  
Author(s):  
Rania Wehbe ◽  
Isam Shahrour

Building information modeling (BIM) is the geometric way to present a life cycle construction project including geographic information. Recently, the Internet of Things (IoT) has been progressively used smart buildings in order to enhance living comfort, work productivity and entertainment. However, studies addressing the combination of these two technologies (BIM and IoT) focused on the automatic diffusion of data through sensors to BIM models [1]. Based on American College of Occupational and Environmental Medicine (ACOEM) a great portion of our time is spend inside buildings, in our offices, homes, schools, health care facilities, or in other private or public buildings. Hence the necessity to improve the basic human right to live in a healthy, safe and comfort environment is vital. This paper presents the use of BIM to support complex decisions concerning comfort conditions in buildings. This use is illustrated through a case study concerning a building of the AUST campus in Beirut.


2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
António Aguiar Costa ◽  
António Grilo

This paper presents an innovative approach to e-procurement in construction, which uses building information models (BIM) to support the construction procurement process. The result is an integrated and electronic instrument connected to a rich knowledge base capable of advanced operations and able to strengthen transaction relationships and collaboration throughout the supply chain. The BIM-based e-procurement prototype has been developed using distinct existing electronic solutions and an IFC server and was tested in a pilot case study, which supported further discussions of the results of the research.


Author(s):  
R. Assi ◽  
T. Landes ◽  
A. Murtiyoso ◽  
P. Grussenmeyer

<p><strong>Abstract.</strong> In the context of architectural heritage preservation, constructing building information models is an important task. However, conceiving a pertinent model is a difficult, time consuming and user-dependent task. Our laboratory has been researching methods to decrease the time and errors inferred by manual segmentation of point clouds. In the perspective of automatization of the process, we implemented an automated registration method that used only keypoints. Keypoints are special points that hold more information about the global structure of the cloud. In order to detect keypoints, we used the Point Cloud Library (PCL) toolbox. The pertinence of the method was evaluated by registering more than 300 clouds of the zoological museum of Strasbourg. The quality of the keypoint detection was first verified on geo-referenced indoor point clouds. Then we applied this method to register the indoor and outdoor point clouds that have much less area in common; those common points being generally the doors and windows of the façade. The registrations of indoor point clouds were satisfying, with mean distances to the ground truth inferior to 20&amp;thinsp;cm. While the first result for joint indoor/outdoor registration are promising, it may be improved in future works.</p>


2019 ◽  
Vol 20 (2) ◽  
pp. 365-376 ◽  
Author(s):  
Vivek Kumar Prasad ◽  
Madhuri D Bhavsar ◽  
Sudeep Tanwar

The evolution of the Internet of Things (IoT) has augmented the necessity for Cloud, edge and fog platforms. The chief benefit of cloud-based schemes is they allow data to be collected from numerous services and sites, which is reachable from any place of the world. The organizations will be benefited by merging the cloud platform with the on-site fog networks and edge devices and as result, this will increase the utilization of the IoT devices and end users too. The network traffic will reduce as data will be distributed and this will also improve the operational efficiency. The impact of monitoring in edge and fog computing can play an important role to efficiently utilize the resources available at these layers. This paper discusses various techniques involved for monitoring for edge and fog computing and its advantages. The paper ends with a case study to demonstarte the need of monitoring in fog and edge in the healthcare system.


Author(s):  
Karim Farghaly ◽  
Fonbeyin Henry Abanda ◽  
Christos Vidalakis ◽  
Graham Wood

This study aims to enhance the information exchange of assets that consume energy from the BIM systems to the AM systems. The research design employs a participatory action research (PAR) approach where focus group is utilised to develop the information delivery manual (IDM), and prototyping approach is utilised to develop the MVD and the plug-in. To achieve the research aim, firstly, an IDM has been elaborated through the engagement of industry experts with the research team. Based on the IDM, model view concepts are developed and mapped to the IFC standard for exchange of building information models between two software applications. In addition, a Revit plug-in has been developed to add, construct, and export the required assets and pertinent properties for the exchange. Finally, rule types and checking scenarios have been coded and applied on the top of developed MVD to validate the consistency and accuracy of extracted models. Furthermore, a case study is conducted to evaluate the validation logic rule types applied on the top of the developed MVD.


2016 ◽  
Vol 23 (6) ◽  
pp. 751-764 ◽  
Author(s):  
Ketil Bråthen ◽  
Anita Moum

Purpose The majority of research on the implementation and use of Building Information Models (BIM) have focused on building design and pre-construction planning. There is only limited research on the usage of BIM in the construction phase, especially by site workers. The purpose of this paper is to analyze the use of BIM by site workers through so-called “BIM-kiosks”. The kiosks allow workers to access BIM models on-site. The aim of this paper is to take a closer look on the introduction of BIM-kiosks and scrutinize how and for what purpose site workers use the kiosks. Design/methodology/approach This is a single case study of an ongoing real-world construction project. The case study is based on qualitative data which stems from observational studies, interviews as well as document studies. Findings Site workers find opportunities for 3D visualization useful and the BIM models are appraised for efficiently handling complex elements. The findings also indicate that the use of BIM-kiosks lead to a greater level of face-to-face collaboration between workers on-site. This may happen because workers meet, both planned and randomly, to discuss in front of the kiosks while using it for visualization. Research limitations/implications The research is limited to a single case. However, some of the recommendations may be relevant to other projects. In addition, the findings demonstrate some of the potential of using BIM on-site in upcoming construction projects. Originality/value Only a few studies have addressed the use of BIM among site workers. Thus, the findings provide practitioners and researchers insight into how current practices may be improved, as well as areas where more research is needed.


Sign in / Sign up

Export Citation Format

Share Document