scholarly journals Time Enhanced Architectural Modelling (T.E.A.M.): Virtual reality project for the planning and visualization of kinetic architecture and dynamic design

2021 ◽  
Vol 2042 (1) ◽  
pp. 012072
Author(s):  
V. Temporin ◽  
J. Volpato ◽  
P.L. Cocco ◽  
A. D’Angelo ◽  
M. Tieghi

Abstract T.E.A.M. is a research project that was created to facilitate the design of kinetic projects and components created through a computational design process. Time is the ingredient that allows dynamism. The following paper examines the core features of Platform One, an experimental digital application born within the project and aimed at supporting designers during the development, in a VE (Virtual Environment) of dynamic architectures and components, as well as the principles that inspired it. The application presents two key features: the first one is that everything modified and developed in the VE retains its geometric characteristics, allowing the user to reach an informed 3D model at the end of the process; the second one is the ease and enjoyment with which the user manipulates complex dynamic geometries in the three-dimensional environment through a natural interface design approach that focuses on direct manipulation of architectural objects and components. The simulator is designed to be used in a 6DOF virtual environment using a commercial VR headset. It has currently been loaded with several archetypal test architectures and soon it will be available to designers who want to test their work with it.

Electronics ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 604
Author(s):  
Lijuan Liu ◽  
Jiahao Guo ◽  
Chao Zhang ◽  
Zhangzhi Wang ◽  
Pinqi Zhu ◽  
...  

The fabrication of underwater devices is necessary for the exploration of water environments and interactions in the Human–Computer Interaction (HCI) field. However, there are fewer approaches to support prototyping used in water environments. The existing prototype methods lack systematic waterproof treatments and provide insufficient software for balance and buoyancy analysis. To address these limitations, we present ElectroPaper, a new approach for the design and fabrication of prototypes used in water environments (surface or beneath) with paper-based electronic interfaces with a crease layer, hardware distribution layer, and hollow-out layer to support physical properties, such as waterproofing, foldability, and conformability. The approach includes a computational design tool for assisting in balance analysis, three-dimensional (3D) model unfolding, and circuit drawing. We describe the design and fabrication process and provide several example applications to illustrate the feasibility and utility of our approach. ElectroPaper provides an inexpensive and effective medium for the fabrication of customized digital prototypes for water environment use.


2013 ◽  
Vol 7 (13) ◽  
pp. 53
Author(s):  
David J. Muñoz ◽  
George Archbold ◽  
Geraldine Delgado ◽  
Leydi V. Muñoz ◽  
Juan Contreras

This article presents the design and implementation of a novel method to generate 3D coordinates from the projection of a laser line over a solid object and the processing of the images obtained during scanning. The result obtained is a 3D model of an isometric view that provides the possibility of being seen from different perspectives under a virtual environment. The methodology is applied in the capture and reconstruction of 3D images of objects submerged in murky waters.


Author(s):  
D. Kontos ◽  
A. Georgopoulos

Abstract. In the context of this paper, a virtual reality application that allows each user to perform basic topographic processes on an already created 3D model inside a virtual environment was developed. Specifically, it is an application that allows the user to perform measurements of distances between two points in three-dimensional space and measurement and extraction of the three-dimensional coordinates of any point inside the virtual reality environment. Furthermore, the created application was evaluated in terms of its functionality, its usability and metric accuracy. Before the developing stage a research was done in order to determine which virtual reality system and which game engine is most suitable to use and finally the HTC Vive® virtual reality system and the Unreal Engine 4 game engine were used. Before all that, the concept of the virtual reality science was defined and also the virtual reality technologies in today's world were analyzed.


2005 ◽  
Author(s):  
Julio C. Mateo ◽  
Joseph T. Manning ◽  
Jeffrey L. Cowgill ◽  
Thomas J. Moore ◽  
Robert H. Gilkey ◽  
...  

2021 ◽  
Vol 29 ◽  
pp. 133-140
Author(s):  
Bin Liu ◽  
Shujun Liu ◽  
Guanning Shang ◽  
Yanjie Chen ◽  
Qifeng Wang ◽  
...  

BACKGROUND: There is a great demand for the extraction of organ models from three-dimensional (3D) medical images in clinical medicine diagnosis and treatment. OBJECTIVE: We aimed to aid doctors in seeing the real shape of human organs more clearly and vividly. METHODS: The method uses the minimum eigenvectors of Laplacian matrix to automatically calculate a group of basic matting components that can properly define the volume image. These matting components can then be used to build foreground images with the help of a few user marks. RESULTS: We propose a direct 3D model segmentation method for volume images. This is a process of extracting foreground objects from volume images and estimating the opacity of the voxels covered by the objects. CONCLUSIONS: The results of segmentation experiments on different parts of human body prove the applicability of this method.


2015 ◽  
Vol 137 (4) ◽  
Author(s):  
Tao He ◽  
Jiaxu Wang ◽  
Zhanjiang Wang ◽  
Dong Zhu

Line contact is common in many machine components, such as various gears, roller and needle bearings, and cams and followers. Traditionally, line contact is modeled as a two-dimensional (2D) problem when the surfaces are assumed to be smooth or treated stochastically. In reality, however, surface roughness is usually three-dimensional (3D) in nature, so that a 3D model is needed when analyzing contact and lubrication deterministically. Moreover, contact length is often finite, and realistic geometry may possibly include a crowning in the axial direction and round corners or chamfers at two ends. In the present study, plasto-elastohydrodynamic lubrication (PEHL) simulations for line contacts of both infinite and finite length have been conducted, taking into account the effects of surface roughness and possible plastic deformation, with a 3D model that is needed when taking into account the realistic contact geometry and the 3D surface topography. With this newly developed PEHL model, numerical cases are analyzed in order to reveal the PEHL characteristics in different types of line contact.


Perception ◽  
10.1068/p5190 ◽  
2004 ◽  
Vol 33 (3) ◽  
pp. 259-276 ◽  
Author(s):  
Clifford F Lewis ◽  
Michael K McBeath

2006 ◽  
Vol 970 ◽  
Author(s):  
Manabu Bonkohara ◽  
Makoto Motoyoshi ◽  
Kazutoshi Kamibayashi ◽  
Mitsumasa Koyanagi

ABSTRACTRecently the development of three dimensional LSI (3D-LSI) has been accelerated and its stage has changed from the research level or limited production level to the investigation level with a view to mass production. This paper describes the current and the future 3D-LSI technologies which we have considered and imagined. The current technology is taken our Chip Size Package (CSP) for sensor device, for instance. In the future technology, there are the five key technologies are described. And considering con and pro of the current 3D LSI stacked approach, such as CoC (Chip on Chip), CoW (Chip on Wafer) and WoW (Wafer on Wafer), We confirmed that CoW combined with Super-Smart-Stack (SSS™) technology will shorten the process time per chip at the same level as WoW approach and is effective to minimize process cost.


Author(s):  
Federico Cesarani ◽  
Maria Cristina Martina ◽  
Valter Capussotto ◽  
Andrea Giuliano ◽  
Renato Grilletto ◽  
...  

Facial reconstruction of mummies and corpses is important in anthropological, medical and forensic studies. The purpose of our study was to evaluate the role of three- Dimensional Multidetector CT examination for 3D facial reconstruction. We present a multidisciplinary work performed by radiologists, anthropologists and forensic police in reconstructing the possible physiognomy of an ancient Egyptian mummy. Three-Dimensional data were obtained from a well-preserved completely wrapped Egyptian mummy from the collection of the Egyptian Museum in Torino, Italy, dated from XXII or XXIII dynasty (945-715 BC). Data were used as a model for the rapid prototyping stereolithographic technique, a method which allows the creation of 3D model with digital data using synthetic materials such as resin or nylon.


Author(s):  
Morteza Vatani ◽  
Faez Alkadi ◽  
Jae-Won Choi

A novel additive manufacturing algorithm was developed to increase the consistency of three-dimensional (3D) printed curvilinear or conformal patterns on freeform surfaces. The algorithm dynamically and locally compensates the nozzle location with respect to the pattern geometry, motion direction, and topology of the substrate to minimize lagging or leading during conformal printing. The printing algorithm was implemented in an existing 3D printing system that consists of an extrusion-based dispensing module and an XYZ-stage. A dispensing head is fixed on a Z-axis and moves vertically, while the substrate is installed on an XY-stage and moves in the x–y plane. The printing algorithm approximates the printed pattern using nonuniform rational B-spline (NURBS) curves translated directly from a 3D model. Results showed that the proposed printing algorithm increases the consistency in the width of the printed patterns. It is envisioned that the proposed algorithm can facilitate nonplanar 3D printing using common and commercially available Cartesian-type 3D printing systems.


Sign in / Sign up

Export Citation Format

Share Document