scholarly journals Relaxation type Kinetic equation for electrons in polycrystalline metal

2021 ◽  
Vol 2056 (1) ◽  
pp. 012021
Author(s):  
T N Lam ◽  
F Karimov ◽  
A A Yushkanov

Abstract The kinetic equation for electrons in a polycrystalline metal is considered. A kinetic equation is written that describes in a unified manner the scattering of conduction electrons both by impurities or phonons and by grain boundaries. This kinetic equation takes into account the scattering of electrons at the boundaries of crystallites of a polycrystalline metal An expression is obtained for the bulk conductivity in the general case. Let us analyze the effect of electron scattering at grain boundaries on its electrical properties.

RSC Advances ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 3809-3815 ◽  
Author(s):  
Huaibo Yi ◽  
Yun Lv ◽  
Yanhui Wang ◽  
Xue Fang ◽  
Victoria Mattick ◽  
...  

The bulk conductivity of Ca12Al14O33 can be apparently enhanced by Ga-doping on the Al sites.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3294
Author(s):  
Jakkree Boonlakhorn ◽  
Jedsada Manyam ◽  
Pornjuk Srepusharawoot ◽  
Sriprajak Krongsuk ◽  
Prasit Thongbai

The effects of charge compensation on dielectric and electrical properties of CaCu3Ti4-x(Al1/2Ta1/4Nb1/4)xO12 ceramics (x = 0−0.05) prepared by a solid-state reaction method were studied based on the configuration of defect dipoles. A single phase of CaCu3Ti4O12 was observed in all ceramics with a slight change in lattice parameters. The mean grain size of CaCu3Ti4-x(Al1/2Ta1/4Nb1/4)xO12 ceramics was slightly smaller than that of the undoped ceramic. The dielectric loss tangent can be reduced by a factor of 13 (tanδ ~0.017), while the dielectric permittivity was higher than 104 over a wide frequency range. Impedance spectroscopy showed that the significant decrease in tanδ was attributed to the highly increased resistance of the grain boundary by two orders of magnitude. The DFT calculation showed that the preferential sites of Al and Nb/Ta were closed together in the Ti sites, forming self-charge compensation, and resulting in the enhanced potential barrier height at the grain boundary. Therefore, the improved dielectric properties of CaCu3Ti4-x(Al1/2Ta1/4Nb1/4)xO12 ceramics associated with the enhanced electrical properties of grain boundaries. In addition, the non-Ohmic properties were also improved. Characterization of the grain boundaries under a DC bias showed the reduction of potential barrier height at the grain boundary. The overall results indicated that the origin of the colossal dielectric properties was caused by the internal barrier layer capacitor structure, in which the Schottky barriers at the grain boundaries were formed.


2015 ◽  
Vol 137 (3) ◽  
Author(s):  
Naokazu Murata ◽  
Naoki Saito ◽  
Kinji Tamakawa ◽  
Ken Suzuki ◽  
Hideo Miura

Effects of crystallographic quality of grain boundaries on mechanical and electrical properties were investigated experimentally. A novel method using two parameters of image quality (IQ) and confidence index (CI) values based on electron back-scattering diffraction (EBSD) analysis was proposed in order to evaluate crystallographic quality of grain boundaries. IQ value was defined as an index to evaluate crystallinity in region irradiated with electron beam. CI value determined existence of grain boundaries in the region. It was found that brittle intergranular fatigue fracture occurred in the film without annealing and the film annealed at 200 °C because network of grain boundaries with low crystallinity remained in these films. On the other hand, the film annealed at 400 °C caused only ductile transgranular fatigue fracture because grain boundaries with low crystallinity almost disappeared. From results of measurement of electrical properties, electrical resistivity of copper interconnection annealed at 400 °C with high crystallinity (2.09 × 10−8 Ωm) was low and electron migration (EM) resistance was high compared with an copper interconnection without annealing with low crystallinity (3.33 × 10−8 Ωm). It was clarified that the interconnection with high crystallinity had superior electrical properties. Thus, it was clarified that the crystallographic quality of grain boundaries has a strong correlation of mechanical and electrical reliability.


1995 ◽  
Vol 403 ◽  
Author(s):  
S. R. Soss ◽  
B. Gittleman ◽  
K. E. Mello ◽  
T.-M. Lu ◽  
S. L. Lee

AbstractIn principle, the resistivity of bulk FCC cubic materials should not depend on the orientation due to the fact that the conductivity tensor is single valued. However, we show that this conclusion is not valid for thin films. Deposition of highly oriented Al, Ag, and Cu films on amorphous substrates using the partially ionized beam (PIB) technique exhibit a resistivity which is strongly correlated with the texture, i.e., the tighter the texture, the lower the film resistivity. We model the film as an array of grains whose grain boundaries can be considered as delta function potentials for electron scattering and the strength of the potentials can be calculated from the measured resistivity of the films. On the other hand, the fiber texture distribution of the the films is obtained from X-ray pole figure measurements, and Monte-Carlo simulations are then performed using this data to determine the average dislocation density at the grain boundaries due to the grain to grain crystallographic mismatch. We show that the transmittance coefficient for electron scattering, and therefore the film resistivity, is a monotonically increasing function of the average dislocation density. We therefore conclude that the structure of grain boundaries in a thin film provides the necessary mechanism by which the resistivity of an FCC cubic metal can depend on the texture.


2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Shanyue Zhao ◽  
Yinqun Hua ◽  
Ruifang Chen ◽  
Jian Zhang ◽  
Ping Ji

The effects of laser irradiation on the structural and electrical properties of ZnO-based thin films were investigated. The XRD pattern shows that the thin films were highly textured along thec-axis and perpendicular to the surface of the substrate. Raman spectra reveal that Bi2O3segregates mainly at ZnO-ZnO grain boundaries. After laser irradiation processing, the grain size of the film was reduced significantly, and the intrinsic atomic defects of grain boundaries and Bi element segregated at the grain boundary were interacted frequently and formed the composite defects of acceptor state. The nonlinear coefficient increased to 24.31 and the breakdown voltage reduced to 5.34 V.


2006 ◽  
Vol 38 (2) ◽  
pp. 131-138 ◽  
Author(s):  
K. Vojisavljevic ◽  
M. Zunic ◽  
G. Brankovic ◽  
T. Sreckovic

Microstructural properties of a commercial zinc oxide powder were modified by mechanical activation in a high-energy vibro-mill. The obtained powders were dry pressed and sintered at 1100?C for 2 h. The electrical properties of grain boundaries of obtained ZnO ceramics were studied using an ac impedance analyzer. For that purpose, the ac electrical response was measured in the temperature range from 23 to 240?C in order to determine the resistance and capacitance of grain boundaries. The activation energies of conduction were obtained using an Arrhenius equation. Donor densities were calculated from Mott-Schottky measurements. The influence of microstructure, types and concentrations of defects on electrical properties was discussed.


2019 ◽  
Author(s):  
Chen Chen ◽  
Aydin Ozcan ◽  
A. Ozgur Yazaydin ◽  
Bradley Ladewig

<b>Abstract</b><div>Grain boundaries are an unavoidable microstructural feature in intergrown polycrystalline metal-organic framework (MOF) membranes. They have been suspected to be less size-selective than a MOF’s micropores, resulting in suboptimal separation performances – a speculation recently confirmed by transmission electron microscopy of MOF ZIF-8. Single-crystal membranes, without grain boundaries, should confine mass transport to micropores and reflect the intrinsic selectivity of the porous material. Here, we demonstrate the feasibility of fabricating single-crystal MOF membranes and directly measuring gas permeability through such a membrane using ZIF-8 as an exemplary MOF. Our single-crystal ZIF-8 membranes achieved ideal selectivities up to 28.9, 10.0, 40.1 and 3.6 for gas pairs CO<sub>2</sub>/N<sub>2</sub>, CO<sub>2</sub>/CH<sub>4</sub>, He/CH<sub>4</sub> and CH<sub>4</sub>/N<sub>2</sub> respectively, much higher than or reversely selective to over 20 polycrystalline ZIF-8 membranes, unequivocally proving the non-selectivity of grain boundaries. The permeability trend obtained in single-crystal membranes aligned with a force field that had been validated against multiple empirical adsorption isotherms.<br></div>


Sign in / Sign up

Export Citation Format

Share Document