scholarly journals Synthesis of rare-earth nanosized phosphors using microwave processing

2021 ◽  
Vol 2056 (1) ◽  
pp. 012049
Author(s):  
A B Vlasenko ◽  
V V Bakhmetyev

Abstract Nanomaterials find permanently extending applications in various areas of life. In particular, nanosized phosphors can be used as pharmaceutical carriers capable of emitting ultraviolet or visible light that activates a photosensitizer, thus significantly expanding the possibilities of photodynamic therapy in the treatment of oncological, bacterial and viral diseases. The conditions required for the use of nanosized phosphors in medicine include their fine dispersion and effective luminescence in the red region of visible light spectrum upon stimulation by X-ray radiation of the range accepted for medical applications, particularly for diagnostic and therapeutic purposes in many diseases. The aim of this work was to study the effect of microwave treatment of Y2O3:Eu phosphors prepared by hydrothermal synthesis in ethylene glycol at 230 °C for 6 hours, involving the decomposition of mixed acetate. In order to reduce the aggregation and growth of the resulting particles, Aerosil A300 with average particle size 7 nm was added to the reaction mixture in the course of hydrothermal synthesis in the ratio 1:1 relating to the obtained phosphor. The microwave treatment was carried out at 800 °C for 5 minutes. The developed method provided Y2O3:Eu phosphor samples featuring with increased luminescence intensity in the region 610…700 nm compared to similar phosphors earlier prepared using the rapid thermal annealing (RTA) procedure.

2007 ◽  
Vol 22 (9) ◽  
pp. 2389-2397 ◽  
Author(s):  
Donggen Huang ◽  
Shijun Liao ◽  
Shuiqing Quan ◽  
Lei Liu ◽  
Zongjian He ◽  
...  

Anatase nitrogen and fluoride codoped TiO2 sol (N–F–TiO2) catalysts were fabricated by a modified sol-gel hydrothermal method, using tetrabutyl titanate as precursor. The microstructure and morphology of sol sample were characterized by x-ray diffraction (XRD), transmission electron microscopy (TEM), ultraviolet-visible dielectric relaxation spectroscopy (UV-VIS-DRS), x-ray photoelectron spectroscopy (XPS), etc. It was shown that N–F–TiO2 particles in sol were partly crystallized to anatase structure and dispersed in the aqueous medium homogeneously. The average particle size was ∼12.0 nm calculated from XRD patterns, and the particle size distribution was narrow. It was noteworthy that the N–F-codoped TiO2 sol particles showed strong visible-light response and high photocatalytic activity for formaldehyde degradation under irradiation by visible light (400–500 nm); we suggested that it may result from the generation of additional band of N 2p in the forbidden band and the synergetic effect of codoping nitrogen and fluorine.


2013 ◽  
Vol 423-426 ◽  
pp. 117-120
Author(s):  
Jun Fang Wei ◽  
Fang Zhu ◽  
Xiao Yan Zhang

With addition of surfactants, a nanocrystalline HZSM-5 zeolite was prepared by hydrothermal synthesis method. X-ray diffraction (XRD) characterization results showed that surfactants can constraint the crystallization of HZSM-5. Scanning electronic microscopy (SEM) characterization revealed that nanocrystalline HZSM-5 with more regular morphology and smaller particle size can be prepared with suitable surfactants as additives. The HZSM-5 particles were 200-800 nm in size and constructed by primary HZSM-5 nanocrystals of 3050 nm. The average particle size will grow up to 800 nm with a cationic surfactant, and decrease to 200 nm with a anionic surfactant.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
K. A. Athmaselvi ◽  
C. Kumar ◽  
M. Balasubramanian ◽  
Ishita Roy

This study evaluates the physical properties of freeze dried tropical (guava, sapota, and papaya) fruit powders. Thermal stability and weight loss were evaluated using TGA-DSC and IR, which showed pectin as the main solid constituent. LCR meter measured electrical conductivity, dielectric constant, and dielectric loss factor. Functional groups assessed by FTIR showed presence of chlorides, and O–H and N–H bonds in guava, chloride and C–H bond in papaya, and chlorides, and C=O and C–H bonds in sapota. Particle size and type of starch were evaluated by X-ray diffraction and microstructure through scanning electronic microscopy. A semicrystalline profile and average particle size of the fruit powders were evidenced by X-ray diffraction and lamellar/spherical morphologies by SEM. Presence of A-type starch was observed in all three fruits. Dependence of electric and dielectric properties on frequency and temperature was observed.


Author(s):  
Saranyoo Chaiwichian ◽  
Buagun Samran

Abstract Monoclinic BiVO4 photocatalyst films decorated on glass substrates were successfully fabricated via a dip-coating technique with different annealing temperatures of 400 °C, 450 °C, 500°C, and 550 °C. All of the physical and chemical properties of as-prepared BiVO4 photocatalyst film samples were investigated using X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy and UV–vis diffuse reflectance spectra techniques. The results revealed that the as-prepared BiVO4 photocatalyst film samples retained a monoclinic phase with an average particle size of about 50 – 100 nm. Moreover, the BiVO4 photocatalyst film samples showed a strong photoabsorption edge in the range of visible light with the band gap energy of 2.46 eV. The photocatalytic activities of all the film samples were tested by the degradation of model acid orange 7 under visible light irradiation. The BiVO4 photocatalyst film sample annealed at a temperature of 500 °C showed the highest photoactivity efficiency compared with other film samples, reaching up to 51%within 180 min. In addition, the stability and reusability of BiVO4 photocatalyst film sample made with an annealing temperature of 500 °C did not show loss of photodegradation efficiency of acid orange 7 after ten recycles. A likely mechanism of the photocatalytic process was established by trapping experiments, indicating that the hydroxyl radical scavenger species can be considered to play a key role for acid orange 7 degradation under visible light irradiation.


Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6085
Author(s):  
Fazal Ur Rehman ◽  
Rashid Mahmood ◽  
Manel Ben Ali ◽  
Amor Hedfi ◽  
Mohammed Almalki ◽  
...  

Bergenia ciliate (B. ciliate) leaf extract was used as a reducing and stabilizing agent for the synthesis of silver-copper oxide nanocomposite (Ag-CuO NC). Scanning and transmission electron microscopies (SEM and TEM) were used to examine the structural morphology, and the average particle size was determined to be 47.65 nm. The phase confirmation and crystalline structure were examined through the X-ray diffraction (XRD) technique, where cubic and monoclinic geometries were assigned to Ag and CuO. The energy dispersive X-ray (EDX), Fourier transform infrared (FTIR) and ultra-violet and visible (UV-Visible) spectroscopies were operated to analyse the elemental composition, functional groups and light absorption phenomena of the Ag-CuO NC. Under the full light spectrum, the photodegradation of Rhodamine 6G was recorded, and 99.42 percent of the dye degraded in 80 min. The Agar well diffusion method was followed to perform antibacterial activity against selected pathogens, and the activity was found to increase with increasing concentration of Ag-CuO NC. The ABTS free radical scavenging activity suggests that the activity of Ag-CuO NC is higher than ascorbic acid.


2018 ◽  
Vol 238 ◽  
pp. 02002
Author(s):  
Fangjing Sun ◽  
Yi Zhang ◽  
Jiawei Zhang ◽  
Xixi Yan ◽  
Xiaoyu Liu ◽  
...  

In this experiment, ultrafine iron phosphate micro-powder was prepared by hydrothermal method which used phosphate slag as an iron source. The effects of reaction temperature, surfactants type and amount on its particle size were explored. The samples were characterized by using Malvern Laser Particle Size Analyzer (MS2000), X-Ray Diffractometer (XRD), Scanning Electron Microscope (SEM) and Energy Dispersive X-Ray Spectroscopy (EDX).The results showed that at 160 °C, 1 wt%CTAB, monoclinic iron phosphate micro-powder was obtained with an average particle size about 0.4 μm which also has a good dispersion in aqueous solution.


2015 ◽  
Vol 752-753 ◽  
pp. 148-153
Author(s):  
M.M. Nassar ◽  
Taha Ebrahiem Farrag ◽  
M.S. Mahmoud ◽  
Sayed Abdelmonem

Calcium carbonate nanoparticles and nanorods were synthesized by precipitation from saturated sodium carbonate and calcium nitrate aqueous solutions through co precipitation method. A new rout of synthesis was done by both using pulsed mixing method and controlling the addition of calcium nitrate. The effect of the agitation speed, and the temperature on particle size and morphology were investigated. Particles were characterized using X-ray Microanalysis, X-ray analysis (XRD) and scanning electron microscopy (SEM). The results indicated that increasing the mixer rotation speed from 3425 to 15900 (rpm) decreases the average particle size to 64±7 nm. A rapid nucleation then aggregation induced by excessive shear force phenomena could explain this observation. Moreover, by increasing the reaction temperature, the products were converted from nanoparticle to nanorods. The maximum attainable aspect ratio was 6.23 at temperature of 75°C and rotation speed of 3425. Generally, temperature raise promoted a significant homoepitaxial growth in one direction toward the formation of calcite nanorods. Overall, this study can open new avenues to control the morphology of the calcium carbonate nanostructures.


2015 ◽  
Vol 1107 ◽  
pp. 301-307 ◽  
Author(s):  
Salahudeen A. Gene ◽  
Elias B. Saion ◽  
Abdul Halim Shaari ◽  
Mazliana A. Kamarudeen ◽  
Naif Mohammed Al-Hada

The fabrication of nanospinel zinc chromite (ZnCr2O4) crystals by the means of thermal treatment method from an aqueous solution containing metal nitrates, polyvinyl pyrrolidone (PVP), and deionized water was described in this study. The samples were calcined at various temperatures ranging from 773 to 973 K for the decomposition of the organic compounds and crystallization of the nanocrystals. PVP was used as capping agent to control the agglomeration of the particles. The characterization studies of the fabricated samples were carried out by X-ray diffraction spectroscopy (XRD), transmission electron microscopy (TEM), energy dispersed X-ray spectroscopy (EDX) and electron spin resonance spectroscopy (ESR). The corresponding peaks of Zn, Cr and O were observed in the EDX spectrum of the sample which confirms the formation of ZnCr2O4. The XRD patterns also confirmed the formation of the single faced nanocrystallines of spinel ZnCr2O4 with a face-centered cubic structure. The average particle size of the synthesized crystals was also determined from the XRD patterns using the Scherers formula which shows that the crystallite sizes increases with increase in calcination temperature and was in good agreement with the TEM images which shows cubical ZnCr2O4 nanocrystals with uniform morphology and particle size distributions. The ESR spectra confirmed the existence of unpaired electron in the fabricated samples and the increase in g-factor and decreases in resonant magnetic field (Hr) were observed as the calcination temperature increases.


1990 ◽  
Vol 5 (10) ◽  
pp. 2056-2065 ◽  
Author(s):  
Nae-Lih Wu ◽  
Ta-Chin Wei ◽  
Shau-Y Hou ◽  
S-Yen Wong

The kinetics of the solid-state reaction Y2BaCuO5 + 3BaCuO2 + 2CuO ⇉ 2YBa2Cu3O6.5−x + xO2 was studied by using x-ray diffractometric and thermogravimetric analyses. Both analyses established that the reaction was well described by the kinetic equation: 1 − 3(1 − F)2/3 + 2(1 − F) = k0 exp(− E/RT)t, where F is the fractional conversion of a calcined powder, E is 520 kcal/molc and, for a rcactant mixture with an average particle size of 3 μm, k0 is 2.03 ⊠ 1092 min−1. An unreacted-core shrinking model was proposed to obtain the particle-size dependence of the reaction, and predicted that the pre-exponential constant k0 changed with reactant particle size by k0 = 2.03 ⊠ 1092(3/d)2 exp(4/d − 4/3), where d is the average reactant particle size in μm.


2012 ◽  
Vol 184-185 ◽  
pp. 1146-1149
Author(s):  
Ping Li ◽  
Hai Yang Wang ◽  
Wan E Wu ◽  
Shuai Ling

To reduce average particle size,magnesium fluoride was directly synthesized from MgF2 and NH4F,the product was characterized by X-ray diffractomer,scanning electron microscopy. Orthogonal experiment was used to explore the influences of factors on the average particle size. Found that the effect order of factors on the average particle size is MgCl2 concentration,NH4F concentration,reaction temperature,reaction time,in the optimization of process conditions,average particle size is 23.1 nm.


Sign in / Sign up

Export Citation Format

Share Document