scholarly journals Assessment of Deterioration Risk of Maijishan Grotto under the Radiation Difference Based on Heat and Moisture Transfer Model

2021 ◽  
Vol 2069 (1) ◽  
pp. 012082
Author(s):  
R B Wu ◽  
Y Ma ◽  
H R Xie ◽  
S Hokoi ◽  
Y Q Yue ◽  
...  

Abstract The ambient environment of architectural heritage is an important factor affecting its conservation. Two adjacent rows of Buddha statues in Grottoes No. 3 (semi-open) of Maijishan Grotto in Gansu, China, show apparent differences in the degree of deterioration. This study made a monitoring scheme of grottoes microenvironments such as air temperature, relative humidity, radiation, and surface temperature to explore the cause of the difference. A two-dimensional heat and moisture (HAM) transfer model was established and verified to simulate the temperature and humidity on the surface and inside of the Buddha statues. Then, temperature and water content fluctuation and the risks of thermal stress destruction on the surface and near the surface of the Buddha statues were evaluated. The results show that the radiation difference causes thermal stress and water content differences both in heights and in depths. This impact brought by the direct sunlight may contribute to the different deterioration on the two rows of Buddha statues. The eaves shaded the upper row of the Buddha statues much longer than the lower ones. Less severe fluctuation and differences in temperature and water content occur at the middle and upper points. This study evaluates the degradation of Grottoes No. 3 and has guiding significance for its preservation methods.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4180
Author(s):  
Joowook Kim ◽  
Michael Brandemuehl

Several building energy simulation programs have been developed to evaluate the indoor conditions and energy performance of buildings. As a fundamental component of heating, ventilating, and air conditioning loads, each building energy modeling tool calculates the heat and moisture exchange among the outdoor environment, building envelope, and indoor environments. This paper presents a simplified heat and moisture transfer model of the building envelope, and case studies for building performance obtained by different heat and moisture transfer models are conducted to investigate the contribution of the proposed steady-state moisture flux (SSMF) method. For the analysis, three representative humid locations in the United States are considered: Miami, Atlanta, and Chicago. The results show that the SSMF model effectively complements the latent heat transfer calculation in conduction transfer function (CTF) and effective moisture penetration depth (EMPD) models during the cooling season. In addition, it is found that the ceiling part of a building largely constitutes the latent heat generated by the SSMF model.



Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 1819
Author(s):  
Borys Basok ◽  
Borys Davydenko ◽  
Anatoliy M. Pavlenko

The article presents the modeling of the dynamics of the vapor-gas mixture and heat and mass transfer (sorption-desorption) in the capillary structure of the porous medium. This approach is underpinned by the fact that the porous structure is represented by a system of linear microchannels oriented along the axes of a three-dimensional coordinate system. The equivalent diameter of these channels corresponds to the average pore diameter, and the ratio of the total pore volume to the volume of the entire porous material corresponds to its porosity. The entire channel area is modeled by a set of cubic elements with a certain humidity, moisture content, pressure and temperature. A simulation is carried out taking into account the difference in temperatures of each of the phases: solid, liquid and gas.



Author(s):  
Michael P. Deru ◽  
Allan T. Kirkpatrick

Abstract Ground-heat transfer is tightly coupled with soil-moisture transfer. The coupling is threefold: heat is transferred by thermal conduction and by moisture transfer; the thermal properties of soil are strong functions of the moisture content; and moisture phase change includes latent heat effects and changes in thermal and hydraulic properties. A heat and moisture transfer model was developed to study the ground-coupled heat and moisture transfer from buildings. The model also includes detailed considerations of the atmospheric boundary conditions, including precipitation. Solutions for the soil temperature distribution are obtained using a finite element procedure. The model compared well with the seasonal variation of measured ground temperatures.



2019 ◽  
Vol 9 (6) ◽  
pp. 1222 ◽  
Author(s):  
Klaus Viljanen ◽  
Xiaoshu Lu

The recent research on highly insulated structures presents controversial conclusions on risks in moisture safety. This paper addresses these controversial issues through investigating the hygrothermal performance of energy efficient envelope structures under high moisture loads. The experiments consist of built-in moisture and rain leakage tests in mineral wool insulated structures. A heat and moisture transfer simulation model is developed to examine the drying-out ability in both warm and cold seasons. The results show that the energy efficient structures have an excellent drying out ability against built-in and leakage moisture. The difference in the drying ability is limited compared to conventional structures. A critical leakage moisture amount reaching the insulation cavity for a wood frame wall is determined to be between 6.9–20.7 g in a single rain event occurring every other day. Further research is required to target highly insulated structures, particularly addressing water vapor diffusion and convection.



2001 ◽  
Vol 124 (1) ◽  
pp. 10-16 ◽  
Author(s):  
Michael P. Deru ◽  
Allan T. Kirkpatrick

Ground-heat transfer is tightly coupled with soil-moisture transfer. The coupling is threefold: heat is transferred by thermal conduction and by moisture transfer; the thermal properties of soil are strong functions of the moisture content; and moisture phase change includes latent heat effects and changes in thermal and hydraulic properties. A heat and moisture transfer model was developed to study the ground-coupled heat and moisture transfer from buildings. The model also includes detailed considerations of the atmospheric boundary conditions, including precipitation. Solutions for the soil temperature distribution are obtained using a finite element procedure. The model compared well with the seasonal variation of measured ground temperatures.



Author(s):  
Kiflom B. Tesfamariam ◽  
Cheng-Xian (Charlie) Lin ◽  
Fang Liu

Abstract This paper presents the results of two-dimensional (2D) numerical simulation of heat, air, and moisture transfer through porous walls, which have important application background in the built environment and other engineering fields. The air flows, heat and moisture transfer in the walls are studied using a transient heat, air, and moisture (HAM) model. This model treats the non-isothermal airflow through two-dimensional porous geometries in a time-dependent format. The model includes the Brinkman equation describes the flow of air and other mathematical equations that calculate the heat and moisture transfer through the porous region. The equations are solved by a finite element method (FEM) using physics-based modeling, which is implemented in the commercial simulation software, COMSOL Multiphysics. The model prediction is first validated by using published benchmark solutions. Eventually, the numerical results are presented to illustrate the complex effects of material porosity and permeability on the heat and moisture transport, and moisture content variation in space and time through the walls, at different humidity and temperature conditions. Within the investigated parameter ranges, it is demonstrated that the relative humidity and temperature difference are the driving forces for the transient heat, air, and moisture transport processes through the porous area in the porous walls.



Sign in / Sign up

Export Citation Format

Share Document