scholarly journals Computational Investigation of Micro-channel Heat Sink with Rectangular Shape Obstacles

2021 ◽  
Vol 2070 (1) ◽  
pp. 012181
Author(s):  
P M Wadekar ◽  
A B Shinde ◽  
V B Patil ◽  
P D. Kulkarni ◽  
P V Kengar ◽  
...  

Abstract Nowadays a lot of interest is given to the geometrical modification of heat sink systems to cool down the electronic components. To improve the performance index of the heat sinks, the use of geometrical features with different shapes and at different locations on the surface can be a valuable approach. In this paper, the effect of rectangular shape obstacles on the micro channel heat sink (MCHS) performance is studied. Due to surface features, vortex is developed which helps to increase the heat transfer rate. Numerical modeling software Comsol Multiphysics with heat transfer in fluid physics is used to investigate the characteristics of a micro-channel heat sink. The numerical result shows that the heat transfer rate can be improved through an appropriate arrangement of rectangular shape obstacles, on the heat sink. Numerical analysis and the comparison is carried out for micro-channel heat sink with and without obstacles. In this paper, various parameters like temperature rise, cell Peclet number and Mean effective thermal conductivity are studied.

Author(s):  
Suabsakul Gururatana ◽  
Xianchang Li

Extended surfaces (fins) have been used to enhance heat transfer in many applications. In electronics cooling, fin-based heat sinks are commonly designed so that coolants (gas or liquid) are forced to pass through the narrow straight channel. To improve the overall heat sink performance, this study investigated numerically the details of heat sinks with interrupted and staggered fins cooled by forced convection. Long and narrow flow passages or channels are widely seen in heat sinks. Based on the fundamental theory of heat transfer, however, a new boundary layer can be created periodically with interrupted fins, and the entrance region can produce a very high heat transfer coefficient. The staggered fins can take advantage of the lower temperature flow from the upstream. The tradeoff is the higher pressure loss. A major challenge for heat sink design is to reduce the pressure loss while keeping the heat transfer rate high. The effect of fin shapes on the heat sink performance was also examined. Two different shapes under study are rectangular and elliptic with various gaps between the interrupted fins in the flow direction. In addition, studies were also conducted on the parametric effects of Reynolds number and gap length. It is observed that heat transfer increases with the Reynolds number due to the feature of developing boundary layer. If the same pressure drop is considered, the heat transfer rate of elliptic fins is higher than that of rectangular fins.


Author(s):  
Abhinandan Jain ◽  
P K Upadhyay ◽  
Jitendra Singh Chouhan

Heat sinks with fins are generally used to enhance the heat transfer rate in many industrial applications such as cooling of electronic, power electronic, telecommunication and automotive components. In many situations where heat transfer is by natural convection fins offer economical and trouble free solutions. The weight and volume of the equipment are the most important parameters of design. Now days the general trend is to use compact systems especially in electronic field which leads to higher packing density of systems causing higher heat generation. It affects the performance of system and may cause the system failure. The most preferred method for cooling electronic and telecommunications devices is passive cooling since it is cost effective and reliable solution. It doesn’t require costly enhancing devices. This features leads to focus on development of efficient fin heat sink. The important element that defines the geometry of the heat sink is its fins. The fins generally used in industry are straight, circular and pin shaped. The objective of this work is review on the heat transfer rate by different shaped fins in different systems. The proper selection of the interruption length increases the heat transfer rate and in addition providing fin interruptions results in considerable weight reduction that can lead to lower manufacturing cost.


Author(s):  
Ninad Trifale ◽  
Eric Nauman ◽  
Kazuaki Yazawa

Use of microchannel heat sinks for high heat flux applications is substantial for thermal management and it is also critical for scalable power generation. For both applications, the energy efficiency consideration of the pump power is crucial. A number of models have been created that predict the performance as a function of the geometrical parameters, taking into account, the pressure loss over the length and volume constraints. Most of the approaches either involve sophisticated calculations incorporating fluid dynamics in channels, or have an analogy with the pin-fin model, which gives simpler calculations but considers only a single laminar flow regime for optimization. Even with the simplified models available, the geometrical impact on mass and pumping power is nonlinear and not apparent for optimization. We propose an optimization of porous medium heat sinks with respect to the heat transfer rate, mass, and pumping power. These are functions of the simplest geometric parameters, i.e. porosity, pore density, and length of the porous medium. Considering large production, mass (cost of raw material) is nearly proportional to the cost of the heat sink, we consider minimizing the mass for indirectly minimizing the overall cost. The other factor for saving energy considered here is the pumping power. This connects to both the heat transfer rate and the power consumption to drive the fluid through the porous medium. The optimization is performed for a specific value of porosity and length of the heat sink. The model considers the effect of flow through the porous medium and the effective thermal conduction as a function of combined conductivity of the solid ligaments and the fluid in pores. An optimum coefficient of performance (COP) is found at over 90% of porosity for minimum mass, pumping work and maximum heat transfer. This mathematical expression of the model will give a quantifiable figure-of-merit to take into account the impact of the mass and the pumping power on the performance to cost ratio.


2001 ◽  
Author(s):  
Jeung Sang Go ◽  
Geunbae Lim ◽  
Hayong Yun ◽  
Sung Jin Kim ◽  
Inseob Song

Abstract This paper presented design guideline of the microfin array heat sink using flow-induced vibration to increase the heat transfer rate in the laminar flow regime. Effect of the flow-induced vibration of a microfin array on heat transfer enhancement was investigated experimentally by comparing the thermal resistances of the microfin array heat sink and those of a plain-wall heat sink. At the air velocities of 4.4m/s and 5.5 m/s, an increase of 5.5% and 11.5% in the heat transfer rate was obtained, respectively. The microfin flow sensor also characterized the flow-induced vibration of the microfin. It was determined that the microfin vibrates with the fundamental natural frequency regardless of the air velocity. It was also shown that the vibrating displacement of the microfin is increased with increasing air velocity and then saturated over a certain value of air velocity. Based on the numerical analysis of the temperature distribution resulted from microfin vibration and experimental results, a simple heat transfer model (heat pumping model) was proposed to understand the heat transfer mechanism of a microfin array heat sink. Under the geometric and structural constraints, the maximum heat transfer enhancement was obtained at the intersection of the minimum thickness of the microfin and constraint of the bending angle.


Author(s):  
Hsiang-Sheng Huang ◽  
Jung-Chang Wang ◽  
Sih-Li Chen

This article provides an experimental method to study the thermal performance of a heat sink with two pairs (outer and inner pair) of embedded heat pipes. The proposed method can determine the heat transfer rate of the heat pipes under various heating power of the heat source. A comprehensive thermal resistance network of the heat sink is also developed. The network estimates the thermal resistances of the heat sink by applying the thermal performance test result. The results show that the outer and inner pairs of heat pipes carries 21% and 27% of the total heat transfer rate respectively, while 52% of the heating power is dissipated from the base plate to the fins. The dominated thermal resistance of the heat sink is the base to heat pipes resistance which is strongly affected by the thermal performance of the heat pipes. The total thermal resistance of the heat sink shows the lowest value, 0.23°C/W, while the total heat transfer rate of the heat sink is 140W and the heat transfer rate of the outer and inner pairs of heat pipes is 30W and 38 W, respectively.


2000 ◽  
Author(s):  
A. Bhattacharya ◽  
Roop L. Mahajan

Abstract In this paper, we present our recent experimental results on buoyancy induced convection in metal foams of different pore densities (corresponding to 5, 10, 20 and 40 pores per inch) and porosities (0.89–0.96). The results show that compared to a hot surface facing up, the heat transfer coefficients in these heat sinks are 5 to 6 times higher. However, when compared to commercially available heat sinks of similar dimensions, the enhancement is found to be marginal. The experimental results also show that for a given pore size, the heat transfer rate increases with porosity suggesting the dominant role played by conduction in enhancing heat transfer. On the other hand, if the porosity is held constant, the heat transfer rate is found to be lower at higher pore densities. This can be attributed to the higher permeability with the larger pores, which allows higher entrainment of air through the porous medium. An empirical correlation, developed for the estimation of Nusselt number in terms of Rayleigh and Darcy numbers, is found to be in good agreement with the experimental data with a maximum error of 10%. We also report our results on novel finned metal foam heat sinks© in natural convection. Experiments were conducted on aluminum foams of 90% porosity with 5 and 20 PPI (pores per inch) with one, two, and four aluminum fins inserted in the foam. All these heat sinks were fabricated in-house. The results show that the finned metal foam heat sinks© are superior in thermal performance compared to the normal metal foam and conventional finned heat sinks. The heat transfer increases with increase in the number of fins. However, the relative enhancement is found to decrease with each additional fin. The indication is that there exists an optimum number of fins beyond which the enhancement in heat transfer due to increased surface area is offset by the retarding effect of overlapping thermal boundary layers. Similar to normal metal foams, the 5 PPI samples are found to give higher values of the heat transfer coefficient compared to the 20 PPI samples due to higher permeability of the porous medium. Future work is planned to arrive at the optimal heat sink configuration for even larger enhancement in heat transfer.


Author(s):  
Aashish Kumar ◽  
Manoj Kumar Mondal

Abstract Improvement of thermal management can significantly enhance the coefficient of performance (COP) of the thermoelectric (TE) system which is one of the potential solutions for cooling electronic components. Since heat sinks are an integral part of all the electronic equipment, therefore, great consideration is given towards meticulous selection of heat sink for improving its reliability and performance. Various methods are being studied to improve heat transfer rates of heat sink such as microchannel, liquid cooling, nano-fluids, fin topology optimization, anodization of pins, and changing heat sink materials. Recent studies have demonstrated that perforations in pins increase the heat transfer rate of pin fin heat sink, though, the results are inadequate to infer the best geometry. Further research is hence necessary to establish the best possible combination of geometry, size, and number of perforations. The present work aims to numerically identify a heat sink configuration with maximum heat transfer rate among several configuration possibilities under laminar flow condition using ANSYS Fluent 18.2. The simulation results demonstrate that lateral perforation in fins enable higher heat transfer rate than the unmodified heat sink geometry, due to higher Nusselt number and reduced pressure drop. The parametric study also reveals that heat sink with three elliptical perforations boost heat transfer rates (about 21% higher) when compared to heat sink with solid and other perforated geometries. Furthermore, perforations reduce weight and greater effectiveness, making it more desirable for its wide-scale applications.


2011 ◽  
Vol 496 ◽  
pp. 188-193
Author(s):  
Saiful Che Ghani ◽  
Kai Cheng ◽  
Xi Zhi Sun ◽  
Richard Bateman

The machining process produces high local temperatures in the tool-chip and tool-workpiece contact areas, normally lead to negative influence on the machine performance. This paper presents a study on optimizing the internal micro channel structure of a tungsten carbide (WC) cutting tool in order to enhance heat transfer rate when applied with internal cooling fluid. Inspired by water jet impingement theory, the efficiency and heat transfer rate of single phase micro channel mainly depends on the fluid velocity as well as temperature difference between the cooling fluid and hot surface. In this study three variables, i.e. the space between channel and internal wall of the insert, channel diameter and fluid temperature, have been tested with design of experiments (DoE) to study the significance of the factors and interactions between them on cutting temperature. A 3-D finite element (FE) model has been developed to observe the effects of these factors on heat transfer rate. The simulation results show the most dominant factor to affect the cutting temperature is the temperature of the cooling fluid followed by the space between channel and tool insert internal wall.


2016 ◽  
Vol 108 ◽  
pp. 427-435 ◽  
Author(s):  
Aibo Yang ◽  
Lingen Chen ◽  
Zhihui Xie ◽  
Huijun Feng ◽  
Fengrui Sun

Sign in / Sign up

Export Citation Format

Share Document