scholarly journals Knee Orthosis for Anterior Cruciate Ligament Injuries - Kinematics and Comfortability Study

2021 ◽  
Vol 2071 (1) ◽  
pp. 012016
Author(s):  
N A Zainal Abidin ◽  
S N S Shafie ◽  
A Azaman ◽  
M H Ramlee

Abstract Knee orthosis is commonly used in supporting the knee movement and protecting the anterior cruciate ligament (ACL) injuries from worsening. In clinical practices, there are many types of ready-made orthoses that available in the market. However, different types of orthoses may provide different performances for patient’s knee joint. Therefore, this paper attempt to investigate the performance of knee orthoses for ACL-injured knee. Two groups took part in the study; (Group 1) six ACL-injured, (Group 2) four healthy participants, where two types of knee orthoses were adopted; (Brace 1) hinge brace, (Brace 2) sleeve brace with bilateral hinges. The knee joint motions were calculated using kinematics data while comfortability was conducted through surveys. From the findings, Brace 1 produced normal range of motion (ROM) for internal rotation at 5.47° while Brace 2 fall outside of the normal range at 2.165°. Meanwhile, the external rotation for Brace 1 (-13.25°) was lower than Brace 2 (-33.25°). Furthermore, the comfortability analysis suggested that Brace 1 (60%) was more effective than Brace 2 (40%). To conclude, Brace 1 portrayed optimal performance than Brace 2 during dynamic balance activities with reduction in ROM to prevent excessive knee rotation.

2018 ◽  
Vol 46 (4) ◽  
pp. 862-868 ◽  
Author(s):  
Jeffrey T. Johnston ◽  
Bert R. Mandelbaum ◽  
David Schub ◽  
Scott A. Rodeo ◽  
Matthew J. Matava ◽  
...  

Background: Anterior cruciate ligament (ACL) injuries are prevalent in contact sports that feature cutting and pivoting, such as American football. These injuries typically require surgical treatment, can result in significant missed time from competition, and may have deleterious long-term effects on an athlete’s playing career and health. While the majority of ACL tears in other sports have been shown to occur from a noncontact mechanism, it stands to reason that a significant number of ACL tears in American football would occur after contact, given the nature of the sport. Hypothesis/Purpose: The purpose was to describe the mechanism, playing situation, and lower extremity limb position associated with ACL injuries in professional American football players through video analysis to test the hypothesis that a majority of injuries occur via a contact mechanism. Study Design: Case series; Level of evidence, 4. Methods: A retrospective cohort of National Football League (NFL) players with ACL injuries from 3 consecutive seasons (2013-2016) was populated by searching publicly available online databases and other traditional media sources. Of 156 ACL injuries identified, 77 occurred during the regular season and playoffs, with video analysis available for 69 injuries. The video of each injury was independently viewed by 2 reviewers to determine the nature of the injury (ie, whether it occurred via a noncontact mechanism), the position of the lower extremity, and the football activity at the time of injury. Playing surface, player position, and time that the injury occurred were also recorded. Results: Contrary to our hypothesis, the majority of ACL injuries occurred via a noncontact mechanism (50 of 69, 72.5%), with the exception of injury to offensive linemen, who had a noncontact mechanism in only 20% of injuries. For noncontact injuries, the most common football activity at the time of injury was pivoting/cutting, and the most common position of the injured extremity included hip abduction/flexion, early knee flexion/abduction, and foot abduction/external rotation. There was no association between injury mechanism and time of injury or playing surface in this cohort. Conclusion: In this study of players in the NFL, the majority of ACL tears involved a noncontact mechanism, with the lower extremity exhibiting a dynamic valgus moment at the knee. These findings suggest that ACL injury prevention programs may reduce the risk of noncontact ACL tears in American football players.


2018 ◽  
Vol 1 (84) ◽  
Author(s):  
Vilma Jurevičienė ◽  
Albertas Skurvydas ◽  
Juozas Belickas ◽  
Giedra Bušmanienė ◽  
Dovilė Kielė ◽  
...  

Research  background  and  hypothesis.  Proprioception  is  important  in  the  prevention  of  injuries  as  reduced proprioception  is  one  of  the  factors  contributing  to  injury  in  the  knee  joint,  particularly  the  ACL.  Therefore, proprioception appears not only important for the prevention of ACL injuries, but also for regaining full function after ACL reconstruction.Research aim. The aim of this study was to understand how proprioception is recovered four and five months after anterior cruciate ligament (ACL) reconstruction.Research methods. The study included 15 male subjects (age – 33.7 ± 2.49 years) who had undergone unilateral ACL reconstruction with a semitendinosus/gracilis (STG) graft in Kaunas Clinical Hospital. For proprioceptive assessment, joint position sense (JPS) was measured on both legs using an isokinetic dynamometer (Biodex), at knee flexion of 60° and 70°, and at different knee angular velocities of 2°/s and 10°/s. The patients were assessed preoperatively and after 4 and 5 months, postoperatively.Research results. Our study has shown that the JPS’s (joint position sense) error scores  to a controlled active movement is significantly higher in injured ACL-deficient knee than in the contralateral knee (normal knee) before surgery and after four and five months of rehabilitation.  After 4 and 5 months of rehabilitation we found significantly lower values in injured knees compared to the preoperative data. Our study has shown that in injured knee active angle reproduction errors after 4 and 5 months of rehabilitation were higher compared with the ones of the uninjured knee. Proprioceptive ability on the both legs was  independent of all differences angles for target and starting position for movement. The knee joint position sense on both legs depends upon the rate of two different angular velocities and the mean active angle reproduction errors at the test of angular velocity slow speed was the highest compared with the fast angular velocity. Discussion and conclusions. In conclusion, our study shows that there was improvement in mean JPS 4 and 5 months after ACL reconstruction, but it did not return to normal indices.Keywords: knee joint, joint position sense, angular velocity, starting position for movement.


2020 ◽  
Vol 11 (1) ◽  
pp. 130
Author(s):  
Datao Xu ◽  
Xinyan Jiang ◽  
Xuanzhen Cen ◽  
Julien S. Baker ◽  
Yaodong Gu

Volleyball players often land on a single leg following a spike shot due to a shift in the center of gravity and loss of balance. Landing on a single leg following a spike may increase the probability of non-contact anterior cruciate ligament (ACL) injuries. The purpose of this study was to compare and analyze the kinematics and kinetics differences during the landing phase of volleyball players using a single leg (SL) and double-leg landing (DL) following a spike shot. The data for vertical ground reaction forces (VGRF) and sagittal plane were collected. SPM analysis revealed that SL depicted a smaller knee flexion angle (about 13.8°) and hip flexion angle (about 10.8°) during the whole landing phase, a greater knee and hip power during the 16.83–20.45% (p = 0.006) and 13.01–16.26% (p = 0.008) landing phase, a greater ankle plantarflexion angle and moment during the 0–41.07% (p < 0.001) and 2.76–79.45% (p < 0.001) landing phase, a greater VGRF during the 5.87–8.25% (p = 0.029), 19.75–24.14% (p = 0.003) landing phase when compared to DL. Most of these differences fall within the time range of ACL injury (30–50 milliseconds after landing). To reduce non-contact ACL injuries, a landing strategy of consciously increasing the hip and knee flexion, and plantarflexion of the ankle should be considered by volleyball players.


2021 ◽  
pp. 1-8
Author(s):  
Elena M. D’Argenio ◽  
Timothy G. Eckard ◽  
Barnett S. Frank ◽  
William E. Prentice ◽  
Darin A. Padua

Context: Anterior cruciate ligament (ACL) injuries are a common and devastating injury in women’s soccer. Several risk factors for ACL injury have been identified, but have not yet been examined as potentially dynamic risk factors, which may change throughout a collegiate soccer season. Design: Prospective cohort study. Methods: Nine common clinical screening assessments for ACL injury risk, consisting of range of motion, movement quality, and power, were assessed in 29 Division I collegiate women’s soccer players. Preseason and midseason values were compared for significant differences. Change scores for each risk factor were also correlated with cumulative training loads during the first 10 weeks of a competitive soccer season. Results: Hip external rotation range of motion and power had statistically significant and meaningful differences at midseason compared with preseason, indicating they are dynamic risk factors. There were no significant associations between the observed risk factor changes and cumulative training load. Conclusions: Hip external rotation range of motion and power are dynamic risk factors for ACL injury in women’s collegiate soccer athletes. Serial screening of these risk factors may elucidate stronger associations with injury risk and improve prognostic accuracy of screening tools.


2018 ◽  
Vol 47 (1) ◽  
pp. 52-58 ◽  
Author(s):  
Einar Andreas Sivertsen ◽  
Kari Bente Foss Haug ◽  
Eirik Klami Kristianslund ◽  
Anne-Marie Siebke Trøseid ◽  
Jari Parkkari ◽  
...  

Background: Several single-nucleotide variants (SNVs) in collagen genes have been reported as predisposing factors for anterior cruciate ligament (ACL) tears. However, the evidence is conflicting and does not support a clear association between genetic variants and risk of ACL ruptures. Purpose: To assess the association of previously identified candidate SNVs in genes encoding for collagen and the risk of ACL injury in a population of elite female athletes from high-risk team sports. Study Design: Cohort study; Level of evidence, 2. Methods: A total of 851 female Norwegian and Finnish elite athletes from team sports were included from 2007 to 2011. ACL injuries acquired before inclusion in the cohort were registered by interview. The participants were followed prospectively through 2015 to record new complete ACL injuries. Six selected SNVs were genotyped ( COL1A1: rs1800012, rs1107946; COL3A1: rs1800255; COL5A1: rs12722, rs13946; COL12A1: rs970547). Results: No associations were found between ACL rupture and the SNVs tested. Conclusion: The study does not support a role of the 6 selected SNVs in genes encoding for collagen proteins as risk factors for ACL injury. Clinical Relevance: Genetic profiling to identify athletes at high risk for ACL rupture is not yet feasible.


2015 ◽  
Vol 7 (2) ◽  
Author(s):  
Davide Edoardo Bonasia ◽  
Andrea D'Amelio ◽  
Pietro Pellegrino ◽  
Federica Rosso ◽  
Roberto Rossi

Although the importance of the anterolateral stabilizing structures of the knee in the setting of anterior cruciate ligament (ACL) injuries has been recognized since many years, most of orthopedic surgeons do not take into consideration the anterolateral structures when performing an ACL reconstruction. Anatomic single or double bundle ACL reconstruction will improve knee stability, but a small subset of patients may experience some residual anteroposterior and rotational instability. For this reason, some researchers have turned again towards the anterolateral aspect of the knee and specifically the anterolateral ligament. The goal of this review is to summarize the existing knowledge regarding the anterolateral ligament of the knee, including anatomy, histology, biomechanics and imaging. In addition, the most common anterolateral reconstruction/tenodesis techniques are described together with their respective clinical outcomes.


2019 ◽  
Vol 28 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Jonathan Sinclair ◽  
Paul J. Taylor

Context: Prophylactic knee bracing is extensively utilized in athletic populations to reduce the high risk from knee injuries, but its role in the attenuation of anterior cruciate ligament (ACL) pathologies is not well understood. Objective: The aim of this investigation was to explore the effects of a prophylactic knee sleeve on ACL loading parameters linked to the etiology of injury in recreational athletes. Setting: Laboratory. Design: Repeated measures. Participants: Thirteen healthy male recreational athletes. Intervention: Participants performed run, cut, and single-leg hop movements under 2 conditions; prophylactic knee sleeve and no sleeve. Main Outcome Measures: Biomechanical data were captured using an 8-camera 3D motion capture system and a force platform. Peak ACL force, average ACL load rate, and instantaneous ACL load rate were quantified using a musculoskeletal modeling approach. Results: The results showed that both average and instantaneous ACL load rates were significantly reduced when wearing the knee sleeve in the hop (sleeve = 612.45/1286.39 N/kg/s and no sleeve = 743.91/1471.42 N/kg/s) and cut (sleeve = 222.55/1058.02 N/kg/s and no sleeve = 377.38/1183.01 N/kg/s) movements. Conclusions: Given the biomechanical association between ACL loading and the etiology of ACL injuries, it is proposed that athletes may be able to attenuate their risk from injury during cut and hop movements through utilization of a prophylactic knee sleeve.


Sign in / Sign up

Export Citation Format

Share Document