scholarly journals Research on Environmental Art Design Based on Computer 3D Animation Technology

2021 ◽  
Vol 2074 (1) ◽  
pp. 012051
Author(s):  
Ni Yin

Abstract In order to improve the ability of environmental art design, a method of environmental art design based on computer three-dimensional animation technology is proposed, and a three-dimensional animation imaging model of environmental art design is constructed. Combining the RGB decomposition technology to extract the color components of the environmental art design three-dimensional animation image, use the color template space projection algorithm to perform the block fusion processing of the environmental art design three-dimensional animation image. The simulation results show that the three-dimensional recognition ability of environmental art design using this method is better, and the performance of feature reconstruction is better, which improves the three-dimensional visual presentation ability of environmental art design.

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Bing Song ◽  
Meng Li ◽  
Liping Lou

The study is aimed at solving the problem of large measurement errors caused by the binocular camera in traditional 3D art design, which leads to inaccurate 3D information of the target. The contour information extraction in the process of human motion pose reconstruction is easily affected by the noise in the image. Therefore, a binocular stereo vision system is built first and it integrates image acquisition, camera calibration, and image processing. The dedistortion method is used to process the image because it can reduce errors. Second, a three-dimensional human motion pose reconstruction model is implemented, the Gaussian template is used to remove the noise in the image frame, and the change detection template (CDM) is used to solve the problem of background “exposure” and “occlusion.” Finally, simulation experiments are designed to verify the system and model designed. Since the research on the application of pose estimation based on visual sensing technology in art design is still blank, such research has great significance and provides a reference for the research in the field. The literature analysis is used to expound and analyze the application of pose estimation based on visual sensing technology in visual communication design and environmental art design: (1) although the binocular stereo vision system causes some errors in the measurement, the overall error is controlled within 2% and the accuracy is high, which proves that it can be applied to the acquisition of three-dimensional information of the target in art design; (2) there is a high degree of fitting between the video sequence data created by the three-dimensional human motion pose reconstruction model designed and the real motion data, which indicates that this method has high accuracy in processing image sequences and the feasibility of applying it to human pose reconstruction in three-dimensional art design is high; (3) through the analysis of the existing literature, it is found that most of the current visual-based attitude assessment studies are carried out by using network cameras combined with computers, and the quality of the obtained images is low. The combination of binocular stereo sensor and attitude estimation technology can be applied to the design of advertising, animation, games, and packaging, making the behavior of virtual characters in animation and games more vivid. The combination provides convenience for the collection of environmental spatial information and object attitude information, the formulation of a design scheme, and real-time monitoring of construction in environmental art design. The purpose of this study is to provide an important theoretical basis for the technical upgrading of art design.


Author(s):  
Amy M. McGough ◽  
Robert Josephs

The remarkable deformability of the erythrocyte derives in large part from the elastic properties of spectrin, the major component of the membrane skeleton. It is generally accepted that spectrin's elasticity arises from marked conformational changes which include variations in its overall length (1). In this work the structure of spectrin in partially expanded membrane skeletons was studied by electron microscopy to determine the molecular basis for spectrin's elastic properties. Spectrin molecules were analysed with respect to three features: length, conformation, and quaternary structure. The results of these studies lead to a model of how spectrin mediates the elastic deformation of the erythrocyte.Membrane skeletons were isolated from erythrocyte membrane ghosts, negatively stained, and examined by transmission electron microscopy (2). Particle lengths and end-to-end distances were measured from enlarged prints using the computer program MACMEASURE. Spectrin conformation (straightness) was assessed by calculating the particles’ correlation length by iterative approximation (3). Digitised spectrin images were correlation averaged or Fourier filtered to improve their signal-to-noise ratios. Three-dimensional reconstructions were performed using a suite of programs which were based on the filtered back-projection algorithm and executed on a cluster of Microvax 3200 workstations (4).


Author(s):  
Chenqi Zhu

In order to improve the guiding accuracy in intercepting the hypersonic vehicle, this article presents a finite-time guidance law based on the observer and head-pursuit theory. First, based on a two-dimensional model between the interceptor and target, this study applies the fast power reaching law to head-pursuit guidance law so that it can alleviate the chattering phenomenon and ensure the convergence speed. Second, target maneuvers are considered as system disturbances, and the head-pursuit guidance law based on an observer is proposed. Furthermore, this method is extended to a three-dimensional case. Finally, comparative simulation results further verify the superiority of the guidance laws designed in this article.


1995 ◽  
Vol 291 ◽  
pp. 369-392 ◽  
Author(s):  
Ronald D. Joslin

The spatial evolution of three-dimensional disturbances in an attachment-line boundary layer is computed by direct numerical simulation of the unsteady, incompressible Navier–Stokes equations. Disturbances are introduced into the boundary layer by harmonic sources that involve unsteady suction and blowing through the wall. Various harmonic-source generators are implemented on or near the attachment line, and the disturbance evolutions are compared. Previous two-dimensional simulation results and nonparallel theory are compared with the present results. The three-dimensional simulation results for disturbances with quasi-two-dimensional features indicate growth rates of only a few percent larger than pure two-dimensional results; however, the results are close enough to enable the use of the more computationally efficient, two-dimensional approach. However, true three-dimensional disturbances are more likely in practice and are more stable than two-dimensional disturbances. Disturbances generated off (but near) the attachment line spread both away from and toward the attachment line as they evolve. The evolution pattern is comparable to wave packets in flat-plate boundary-layer flows. Suction stabilizes the quasi-two-dimensional attachment-line instabilities, and blowing destabilizes these instabilities; these results qualitatively agree with the theory. Furthermore, suction stabilizes the disturbances that develop off the attachment line. Clearly, disturbances that are generated near the attachment line can supply energy to attachment-line instabilities, but suction can be used to stabilize these instabilities.


2012 ◽  
Vol 217-219 ◽  
pp. 1998-2001
Author(s):  
Tie Geng ◽  
Qing Hai Ren ◽  
Wei Qing Tu ◽  
Dan Dan Liu

According to the color contour map of the 3D injection molding simulation results, the commonly used color contour map drawing algorithm was researched, and a three-dimensional color image rendering algorithm which based on the "physical field values and color range mapping" was given too. And the key technologies of the algorithm which was used to draw 3D color contour map were introduced in detail. In the end, an example was given.


Author(s):  
Muhammad Usman Sheikh ◽  
Kalle Ruttik ◽  
Riku Jäntti ◽  
Jyri Hämäläinen

AbstractThe aim of this work is to study the impact of small receiver displacement on a signal propagation in a typical conference room environment at a millimeter wave frequency of 60 GHz. While channel measurements provide insights on the propagation phenomena, their use for the wireless system performance evaluation is challenging. Whereas, carefully executed three-dimensional ray tracing (RT) simulations represent a more flexible option. Nevertheless, a careful validation of simulation methodology is needed. The first target of this article is to highlight the benefits of an in-house built three-dimensional RT tool at 60 GHz and shows the effectiveness of simulations in predicting different characteristics of the channel. To validate the simulation results against the measurements, two different transmitter (Tx) positions and antenna types along with ten receiver (Rx) positions are considered in a typical conference room. In first system configuration, an omnidirectional antenna is placed in the middle of the table, while in the second system configuration a directed horn antenna is located in the corner of the meeting room. After validating the simulation results with the measurement data, in the second part of this work, the impact of a small change, i.e., 20 cm in the receiver position, is studied. To characterize the impact, we apply as performance indicators the received power level, root mean square delay spread (RMS-DS) and RMS angular spread (RMS-AS) in azimuth plane. The channel characteristics are considered with respect to the direct orientation (DO), i.e., the Rx antenna is directed toward the strongest incoming path. Different antenna configurations at the Tx and Rx side are applied to highlight the role of antenna properties on the considered channel characteristics. Especially, in the second system configuration the impact of different antenna half power beamwidth on different considered channel characteristics is highlighted through acquired simulation results. The validation of results shows the RMS error of only 2–3 dB between the measured and simulated received power levels for different Tx configurations in the direction of DO. Results indicate that only a small change of the Rx position may result a large difference in the received power level even in the presence of line-of-sight between the Tx and Rx. It is found that the STD of received power level across the room increases with the decrease in HPBW of the antenna. As can be expected, directed antennas offer lower value of RMS-DS and RMS-AS compared with isotropic antenna.


Sign in / Sign up

Export Citation Format

Share Document