scholarly journals The potential of using sucrose particles for self-cleaning surface fabrication on recycled high-density polyethylene

2021 ◽  
Vol 2080 (1) ◽  
pp. 012005
Author(s):  
Yee Wen Yap ◽  
Muhammad Salihin Zakaria ◽  
Razif Muhammed Nordin ◽  
Khairul Anwar Abdul Halim ◽  
Bee Ying Lim ◽  
...  

Abstract Degradation properties of recycled plastic causing it less widely used. By adding extra physical properties, its commercial value and usage can be increased. In this current work, green self-cleaning surfaces from recycled high-density polyethylene (rHDPE) were fabricated using sucrose particles. Water contact angle and sliding angle, self-cleaning properties and surface morphology were characterized. Furthermore, the surface texture was also evaluated by conducting a surface roughness test. By creating porosity onto the rHDPE matrix, the surface exhibits an excellent self-cleaning property with a water contact angle larger than 150°. Surface morphology reveals the porosity and roughness of the surface. In this fabricating process, no chemicals were used while rHDPE is selected for the purpose. Hence, the process is environmentally friendly and low cost for self-cleaning surface fabrication.

2021 ◽  
Vol 2080 (1) ◽  
pp. 012004
Author(s):  
Muhammad Aidil Adz’ryl Nor Azizan ◽  
Muhammad Salihin Zakaria ◽  
Razif Muhammed Nordin ◽  
Khairul Anwar Abdul Halim ◽  
Bee Ying Lim ◽  
...  

Abstract In this work, the water-dissolved surface modifier method was introduced to recycled high-density polyethylene (rHDPE) matrix to fabricate green superhydrophobic surfaces. Surface cavities on rHDPE are formed by sodium chloride particles which can be readily rinsed off and reused. Water contact angle, self-cleaning properties, and surface morphology were characterized. By creating porosity onto the rHDPE matrix, the surface exhibits an excellent self-cleaning property with a water contact angle larger than 150°. Surface morphology reveals the porosity and roughness of the surface. In this fabricating process, no chemicals are used while rHDPE is selected for the purpose. Based on the findings, it is proven that the superhydrophobic surface can be fabricated with a simple yet green approach.


2013 ◽  
Vol 634-638 ◽  
pp. 2960-2963
Author(s):  
Xin Fu ◽  
Hui Fang Gong ◽  
Xi Mei Xiao

A superhydrophobic HDPE coating was obtained by a facile but yet effective way. The water contact angle and sliding angle of the superhydrophobic HDPE coating were 156±1.9ºand 3±1.6º, respectively. The HDPE coating was still superhydrophobic contacting with acid, alkali, salt aqueous solutions.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Rafik Abbas ◽  
N. Elkhoshkhany ◽  
Ahmed Hefnawy ◽  
Shaker Ebrahim ◽  
Aya Rahal

A stable self-cleaning superhydrophobic modified fluorinated graphene surface with micro/nanostructure was successfully fabricated on copper substrates via drop coating process. Irregularly stacked island-like multilayered fluorinated graphene nanoflakes comprised the microstructure. The fabricated films exhibited outstanding superhydrophobic property with a water contact angle 167° and water sliding angle lower than 4°. The developed superhydrophobic surface showed excellent corrosion resistance with insignificant decrease of water contact angle 166° in 3.5 wt.% NaCl solution. This stable highly hydrophobic performance of the fluorinated graphene films could be useful in self-cleaning, antifogging, corrosion resistive coatings and microfluidic devices.


2011 ◽  
Vol 295-297 ◽  
pp. 1613-1616 ◽  
Author(s):  
Zhi Qing Yuan ◽  
Jun Liang Wu ◽  
Xi Hai Hao ◽  
Xu Nan Wang ◽  
Xun Meng Xu ◽  
...  

A superhydrophobic polypropylene surface was obtained by a facile method. The water contact angle and sliding angle of the superhydrophobic polypropylene surface were 157±1.8ºand 1.6º, respectively. When the superhydrophobic polypropylene surface was contaminated, 99 % contaminant particles were removed from the superhydrophobic polypropylene surface by artificial rain, showing excellent self-cleaning property.


2012 ◽  
Vol 200 ◽  
pp. 343-346
Author(s):  
Zhi Qing Yuan ◽  
Bao Feng Song ◽  
Qi Long Liu ◽  
Hai Yun Jiang ◽  
Ji Ping Bin ◽  
...  

Inspired by the “lotus effect”, a porous superhydrophobic PS/PVC composites film comprised of many micro-spheres and nanofibers was obtained by a simple approach. These micro-spheres were interlinked with nano-fibers. The sizes of the micro-spheres were 0.6-3 µm, and the diameters of these nano-fibers were between 100-600 nm. The water contact angle and sliding angle on the superhydrophobic film were 155±1.8ºand 3º, respectively. When water flowed through the PS/PVC composites film for 2 h, no water bead was adhered on the superhydrophobic PS/PVC composites film, and the contact angle value was remained about 155°. Moreover, the contact angle were still higher than 150° when contacting with water with the temperatures ranging from 10°C to 60°C. The surface morphology of the PS/PVC composites film can be adjusted by changing the addition of PVC.


RSC Advances ◽  
2017 ◽  
Vol 7 (47) ◽  
pp. 29275-29283 ◽  
Author(s):  
Aoyun Zhuang ◽  
Ruijin Liao ◽  
Sebastian C. Dixon ◽  
Yao Lu ◽  
Sanjayan Sathasivam ◽  
...  

Hierarchical micro/nano-structured transparent superhydrophobic polytetrafluoroethylene films with water contact angle 168°, water sliding angle <1° and visible transmittance >90% were prepared on glass via aerosol-assisted chemical vapor deposition.


Sign in / Sign up

Export Citation Format

Share Document