scholarly journals Transparent superhydrophobic PTFE films via one-step aerosol assisted chemical vapor deposition

RSC Advances ◽  
2017 ◽  
Vol 7 (47) ◽  
pp. 29275-29283 ◽  
Author(s):  
Aoyun Zhuang ◽  
Ruijin Liao ◽  
Sebastian C. Dixon ◽  
Yao Lu ◽  
Sanjayan Sathasivam ◽  
...  

Hierarchical micro/nano-structured transparent superhydrophobic polytetrafluoroethylene films with water contact angle 168°, water sliding angle <1° and visible transmittance >90% were prepared on glass via aerosol-assisted chemical vapor deposition.

Nanomaterials ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 471 ◽  
Author(s):  
Martha Claros ◽  
Milena Setka ◽  
Yecid P. Jimenez ◽  
Stella Vallejos

Non-modified (ZnO) and modified (Fe2O3@ZnO and CuO@ZnO) structured films are deposited via aerosol assisted chemical vapor deposition. The surface modification of ZnO with iron or copper oxides is achieved in a second aerosol assisted chemical vapor deposition step and the characterization of morphology, structure, and surface of these new structured films is discussed. X-ray photoelectron spectrometry and X-ray diffraction corroborate the formation of ZnO, Fe2O3, and CuO and the electron microscopy images show the morphological and crystalline characteristics of these structured films. Static water contact angle measurements for these structured films indicate hydrophobic behavior with the modified structures showing higher contact angles compared to the non-modified films. Overall, results show that the modification of ZnO with iron or copper oxides enhances the hydrophobic behavior of the surface, increasing the contact angle of the water drops at the non-modified ZnO structures from 122° to 135° and 145° for Fe2O3@ZnO and CuO@ZnO, respectively. This is attributed to the different surface properties of the films including the morphology and chemical composition.


Catalysts ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 534
Author(s):  
Alessio Aufoujal ◽  
Ulrich Legrand ◽  
Jean-Luc Meunier ◽  
Jason Robert Tavares

Photo-initiated chemical vapor deposition (PICVD) functionalizes carbon nanotube (CNT)-enhanced porous substrates with a highly polar polymeric nanometric film, rendering them super-hydrophilic. Despite its ability to generate fully wettable surfaces at low temperatures and atmospheric pressure, PICVD coatings normally undergo hydrophobic recovery. This is a process by which a percentage of oxygenated functional group diffuse/re-arrange from the top layer of the deposited film towards the bulk of the substrate, taking the induced hydrophilic property of the material with them. Thus, hydrophilicity decreases over time. To address this, a vertical chemical gradient (VCG) can be deposited onto the CNT-substrate. The VCG consists of a first, thicker highly cross-linked layer followed by a second, thinner highly functionalized layer. In this article, we show, through water contact angle and XPS measurements, that the increased cross-linking density of the first layer can reduce the mobility of polar functional groups, forcing them to remain at the topmost layer of the PICVD coating and to suppress hydrophobic recovery. We show that employing a bi-layer VCG suppresses hydrophobic recovery for five days and reduces its effect afterwards (contact angle stabilizes to 42 ± 1° instead of 125 ± 3°).


2018 ◽  
Vol 764 ◽  
pp. 68-77 ◽  
Author(s):  
Xiu Ting Wei ◽  
Wei Liang Shi ◽  
Zhi Yong Li ◽  
Zhi Gang Wang ◽  
Xiao Long Wu ◽  
...  

Hydrophobicity improvement of DLC can be achieved by adding fluorine element usually. However, higher F content may affect the other performance of DLC seriously, such as strength and abrasive resistance. Plasma enhanced chemical vapor deposition technology were employed to prepare F-DLC on the surface of steel (S35C) substrate in condition of 20mass% of F. Experimental results demonstrated that roughness significant increase in the coating substrate has contributed to improve hydrophobicity. In the range of 0~200nm for the roughness, the contact angle is influenced by the surface energy and the surface roughness; Ra>200nm, the influence of roughness on the water contact angle is gradually becoming the leading. And Ra=1300nm, water contact angle is 104°.


2019 ◽  
Vol 115 (16) ◽  
pp. 163104 ◽  
Author(s):  
Zhiyan Jia ◽  
Jiyu Dong ◽  
Lixuan Liu ◽  
Jianyong Xiang ◽  
Anmin Nie ◽  
...  

2008 ◽  
Vol 23 (4) ◽  
pp. 1042-1050 ◽  
Author(s):  
A. Cremona ◽  
E. Vassallo ◽  
A. Merlo ◽  
A. Srikantha Phani ◽  
L. Laguardia

Amorphous siliconlike films with hydrophobic functionalities have been deposited by plasma-enhanced chemical-vapor deposition on carbon-fiber-reinforced polymer (CFRP) unidirectional laminates used for micromechanical applications where high strength-to-weight and high stiffness-to-weight ratios are required. To improve long-term geometrical stability in ultrahigh-precision machine structures, hydrophobic CFRP materials are desirable. Three layers have been grown with different plasma-process parameters from a mixture of hexamethyldisiloxane, O2, and Ar. Chemical composition, water contact angle, surface energy, morphology, and tribological properties have been evaluated to choose the one that best fulfills hydrophobicity, wear, and scratch resistance. Wear tests have also been carried out on CFRP laminates coated with a polyurethane layer to compare the wear performance of the above specimens with that of a conventional hydrophobic coating. Scanning electron microscope images show a very good adhesion of the films to the composite substrate because the failure of the film and of the substrate (such as fiber failure) take place simultaneously.


2015 ◽  
Vol 347 ◽  
pp. 632-635 ◽  
Author(s):  
Liwei Fan ◽  
Hui Zhang ◽  
Pingping Zhang ◽  
Xuhui Sun

2009 ◽  
Vol 79-82 ◽  
pp. 1451-1454 ◽  
Author(s):  
Zhi Qiu Zhang ◽  
Wen Fang Yang ◽  
Zhen Ya Gu ◽  
Rui Ting Huo

Lotus effect is well-known to be governed by chemical properties and nanotextures of the surfaces. In this paper, a method with two-steps treatment technology was applied to develop the superhydrophobic polyvinylidene fruoride(PVDF) membrane with the property of anti-contamination and self-cleaning. First, the PVDF membrane was treated by oxygen plasma so as to get the reactive groups. Second, this film was deposited by perfluoroalkylethyl acrylate precursor/Ar gas via plasma-enhanced chemical vapor deposition (PECVD). The modified film surface exhibited ultra water-repellent ability, showing that the water contact angles was larger than 150 °and the dynamic contact angles was usually lower than 5°.


Nanomaterials ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 700 ◽  
Author(s):  
Hua-Fei Li ◽  
Fan Wu ◽  
Chen Wang ◽  
Pei-Xin Zhang ◽  
Hai-Yan Hu ◽  
...  

3D hybrid nanostructures connecting 1D carbon nanotubes (CNTs) with 2D graphene have attracted more and more attentions due to their excellent chemical, physical and electrical properties. In this study, we firstly report a novel and facile one-step process using template-directed chemical vapor deposition (CVD) to fabricate highly nitrogen doped three-dimensional (3D) N-doped carbon nanotubes/N-doped graphene architecture (N-CNTs/N-graphene). We used nickel foam as substrate, melamine as a single source for both carbon and nitrogen, respectively. The morphology and microstructure were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, isothermal analyses, X-ray photoelectron microscopy and Raman spectra. The obtained 3D N-CNTs/N-graphene exhibits high graphitization, a regular 3D structure and excellent nitrogen doping and good mesoporosity.


Sign in / Sign up

Export Citation Format

Share Document