Facile Method to Prepare Superhydrophobic High-Density Polyethylene Coating

2013 ◽  
Vol 634-638 ◽  
pp. 2960-2963
Author(s):  
Xin Fu ◽  
Hui Fang Gong ◽  
Xi Mei Xiao

A superhydrophobic HDPE coating was obtained by a facile but yet effective way. The water contact angle and sliding angle of the superhydrophobic HDPE coating were 156±1.9ºand 3±1.6º, respectively. The HDPE coating was still superhydrophobic contacting with acid, alkali, salt aqueous solutions.

2021 ◽  
Vol 2080 (1) ◽  
pp. 012005
Author(s):  
Yee Wen Yap ◽  
Muhammad Salihin Zakaria ◽  
Razif Muhammed Nordin ◽  
Khairul Anwar Abdul Halim ◽  
Bee Ying Lim ◽  
...  

Abstract Degradation properties of recycled plastic causing it less widely used. By adding extra physical properties, its commercial value and usage can be increased. In this current work, green self-cleaning surfaces from recycled high-density polyethylene (rHDPE) were fabricated using sucrose particles. Water contact angle and sliding angle, self-cleaning properties and surface morphology were characterized. Furthermore, the surface texture was also evaluated by conducting a surface roughness test. By creating porosity onto the rHDPE matrix, the surface exhibits an excellent self-cleaning property with a water contact angle larger than 150°. Surface morphology reveals the porosity and roughness of the surface. In this fabricating process, no chemicals were used while rHDPE is selected for the purpose. Hence, the process is environmentally friendly and low cost for self-cleaning surface fabrication.


2021 ◽  
Vol 2080 (1) ◽  
pp. 012004
Author(s):  
Muhammad Aidil Adz’ryl Nor Azizan ◽  
Muhammad Salihin Zakaria ◽  
Razif Muhammed Nordin ◽  
Khairul Anwar Abdul Halim ◽  
Bee Ying Lim ◽  
...  

Abstract In this work, the water-dissolved surface modifier method was introduced to recycled high-density polyethylene (rHDPE) matrix to fabricate green superhydrophobic surfaces. Surface cavities on rHDPE are formed by sodium chloride particles which can be readily rinsed off and reused. Water contact angle, self-cleaning properties, and surface morphology were characterized. By creating porosity onto the rHDPE matrix, the surface exhibits an excellent self-cleaning property with a water contact angle larger than 150°. Surface morphology reveals the porosity and roughness of the surface. In this fabricating process, no chemicals are used while rHDPE is selected for the purpose. Based on the findings, it is proven that the superhydrophobic surface can be fabricated with a simple yet green approach.


RSC Advances ◽  
2017 ◽  
Vol 7 (47) ◽  
pp. 29275-29283 ◽  
Author(s):  
Aoyun Zhuang ◽  
Ruijin Liao ◽  
Sebastian C. Dixon ◽  
Yao Lu ◽  
Sanjayan Sathasivam ◽  
...  

Hierarchical micro/nano-structured transparent superhydrophobic polytetrafluoroethylene films with water contact angle 168°, water sliding angle <1° and visible transmittance >90% were prepared on glass via aerosol-assisted chemical vapor deposition.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Rafik Abbas ◽  
N. Elkhoshkhany ◽  
Ahmed Hefnawy ◽  
Shaker Ebrahim ◽  
Aya Rahal

A stable self-cleaning superhydrophobic modified fluorinated graphene surface with micro/nanostructure was successfully fabricated on copper substrates via drop coating process. Irregularly stacked island-like multilayered fluorinated graphene nanoflakes comprised the microstructure. The fabricated films exhibited outstanding superhydrophobic property with a water contact angle 167° and water sliding angle lower than 4°. The developed superhydrophobic surface showed excellent corrosion resistance with insignificant decrease of water contact angle 166° in 3.5 wt.% NaCl solution. This stable highly hydrophobic performance of the fluorinated graphene films could be useful in self-cleaning, antifogging, corrosion resistive coatings and microfluidic devices.


2011 ◽  
Vol 295-297 ◽  
pp. 1613-1616 ◽  
Author(s):  
Zhi Qing Yuan ◽  
Jun Liang Wu ◽  
Xi Hai Hao ◽  
Xu Nan Wang ◽  
Xun Meng Xu ◽  
...  

A superhydrophobic polypropylene surface was obtained by a facile method. The water contact angle and sliding angle of the superhydrophobic polypropylene surface were 157±1.8ºand 1.6º, respectively. When the superhydrophobic polypropylene surface was contaminated, 99 % contaminant particles were removed from the superhydrophobic polypropylene surface by artificial rain, showing excellent self-cleaning property.


Author(s):  
Mahdi Hasanzadeh ◽  
Hossein Shahriyari Far ◽  
Aminoddin Haji ◽  
Giuseppe Rosace

This work attempted to fabricate superhydrophobic fabric via simple immersion technique. Textile fabrics were coated with silica nanoparticles prepared from tetraethoxysilane (TEOS) to obtain sufficient roughness with hydrophobic surface chemistry. Then the coated fabrics were treated with polydimethylsiloxane (PDMS) and aminopropyltriethoxysilane (APTES) to reduce the surface energy. The effects of PDMS concentration on the surface morphology and superhydrophobicity of as-prepared fabric were investigated. The morphology and the composition of superhydrophobic fabric was characterized by scanning electron microscopy (SEM), energy dispersive X-ray (EDS) and Fourier transform infrared (FTIR) spectroscopy. The results revealed the formation of spherical silica nanoparticles with average particle size of 250 nm throughout the fabric surface. The possible interactions between silica nanoparticles and APTES, as well as the fabrics were elucidated. Investigating the hydrophobicity of fabrics via water contact angle (WCA) measurement showed that the treated fabric exhibits excellent water repellency with a water contact angle as high as 151&deg; and a very low water sliding angle. It also found that the treated fabric maintained most of its hydrophobicity against repeated washing. The comfort properties of the obtained superhydrophobic fabrics in term of air permeability and bending length did not reveal any significant changes.


2012 ◽  
Vol 557-559 ◽  
pp. 1884-1887 ◽  
Author(s):  
Jian Wang ◽  
Hong Chen

A porous superhydrophobic magnesium oxide coating with low sliding angle was prepared by a facile method. The water contact angle and sliding angle of the porous superhydrophobic magnesium oxide coating were 155±1.9º and 1.5º, respectively. The anti-icing property of the porous superhydrophobic magnesium oxide coating with low sliding angle was investigated in a climatic chamber with a working temperature of −6 °C. The results showed that the porous superhydrophobic magnesium oxide coating with low sliding angle can largely prevent ice formation on the surface, showing excellent anti-icing property. The porous superhydrophobic magnesium oxide coating with good anti-icing property will be perfectly desirable for outdoor equipments to reduce ice formation on their surfaces in cold seasons. This work will provide a new way to fabricate anti-icing coating and thus find applications in a variety of fields.


Sign in / Sign up

Export Citation Format

Share Document