scholarly journals Investigation of laser and thermal sintering processes of silver nanoparticles agglomerates synthesized by spark discharge

2021 ◽  
Vol 2086 (1) ◽  
pp. 012169
Author(s):  
S S Tikhonov ◽  
M Nouraldeen ◽  
K M Khabarov ◽  
A A Efimov ◽  
V V Ivanov

Abstract Changes in the shape and size of silver nanoparticles (NPs) during their laser and thermal sintering have been studied experimentally and theoretically. Aerosol silver NPs forming dendrid-like agglomerates 180 nm in size were synthesized by spark discharge and exposed to laser radiation and high temperature of 750 °C. The shape and size of the NPs were investigated depending on the power of the laser radiation and the temperature of the gas. It is estimated that, at a power density of laser radiation of the order of 103-104 W/cm2, the formation of spherical NPs with an average size of 140 nm is expected. Such particles turn out to be similar to NPs thermally heated in a gas flow at 750 °C for 6 seconds.

2006 ◽  
Vol 942 ◽  
Author(s):  
A. J. Murray ◽  
P. Jaroenapibal ◽  
B. Koene ◽  
S. Evoy

ABSTRACTWe report the development of a metallic colloid sintering process enabling the creation of bonding layers at moderate temperatures ranging from 150°C to 300°C, and pressures lower than 5MPa. This colloidal n-propyl acetate dispersion of Ag nanoparticles, having an average size distribution of 103nm, was used in sintered interconnect fabrication. Open air sintering of a 10um thick film resulted in an average resistivity of 0.20·10−6 −0.30·10−6 Ωm. Film resistances were found to be as low as 0.18·10−6 Ωm. Independent test varying either pressure or temperature were correlated to ultimate shear strength and modulus. The analysis of a 1cm2 bond area resulted in a peak shear strength of 5.83 MPa and shear modulus of 346 MPa which occurred following bonding at 300°C with a pressure of 4.219 MPa.


Author(s):  
Dmitry V. Nesterovich ◽  
Oleg G. Penyazkov ◽  
Yu. A. Stankevich ◽  
M. S. Tretyak ◽  
Vladimir V. Chuprasov ◽  
...  

2012 ◽  
Vol 17 (4) ◽  
pp. 379-384 ◽  
Author(s):  
Krzysztof Strzecha ◽  
Tomasz Koszmider ◽  
Damian Zarębski ◽  
Wojciech Łobodziński

Abstract In this paper, a case-study of the auto-focus algorithm for correcting image distortions caused by gas flow in high-temperature measurements of surface phenomena is presented. This article shows results of proposed algorithm and methods for increasing its accuracy.


2020 ◽  
Vol 21 (11) ◽  
pp. 1129-1137 ◽  
Author(s):  
Somayeh Mirsadeghi ◽  
Masoumeh F. Koudehi ◽  
Hamid R. Rajabi ◽  
Seied M. Pourmortazavi

Background: Herein, we report the biosynthesis procedure to prepare silver nanoparticles as reduction and capping agents with the aqueous plant extract of Perovskia abrotanoides. Methods: The therapeutic application of silver nanoparticles entirely depends on the size and shape of the nanoparticles therefore, their control during the synthesis procedure is so important. The effects of synthesis factors, for example, silver ion concentration, the mass of plant extract, reaction time and extraction temperature, on the size of silver particles were considered and optimized. Several analytical methods were used for the characterization of silver NPs including FT-IR and UV–Vis spectrophotometer, XRD and SEM. Results: The results showed that the mean size of the silver particles was about 51 nm. Moreover, the antibacterial properties of biosynthesized silver NPs were investigated by the minimum inhibitory concentration, minimum bactericidal concentration, and Well-diffusion tests. The minimum inhibitory concentration/ minimum bactericidal concentration values of silver NPs and aqueous plant extract versus Gram-positive bacteria (Staphylococcus aureus and Bacillus cereus) and Gram-negative bacteria (E. coli) were 3.03/0.00, 1.20/0.01, 3.06/0.00, 0.98/1.04, 1.00/0.05 and 1.30/0.03 (mg/mL), respectively. Conclusion: The antimicrobial activity study displayed that the synthesized silver nanoparticles by plant extract have better antimicrobial properties compared to aqueous plant extract of Perovskia abrotanoides.


Biology ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 473
Author(s):  
Prabu Kumar Seetharaman ◽  
Rajkuberan Chandrasekaran ◽  
Rajiv Periakaruppan ◽  
Sathishkumar Gnanasekar ◽  
Sivaramakrishnan Sivaperumal ◽  
...  

To develop a benign nanomaterial from biogenic sources, we have attempted to formulate and fabricate silver nanoparticles synthesized from the culture filtrate of an endophytic fungus Penicillium oxalicum strain LA-1 (PoAgNPs). The synthesized PoAgNPs were exclusively characterized through UV–vis absorption spectroscopy, Fourier Transform Infra-Red spectroscopy (FT-IR), X-ray powder diffraction (XRD), and Transmission Electron Microscopy (TEM) with energy dispersive X-ray spectroscopy (EDX). The synthesized nanoparticles showed strong absorbance around 430 nm with surface plasmon resonance (SPR) and exhibited a face-centered cubic crystalline nature in XRD analysis. Proteins presented in the culture filtrate acted as reducing, capping, and stabilization agents to form PoAgNPs. TEM analysis revealed the generation of polydispersed spherical PoAgNPs with an average size of 52.26 nm. The PoAgNPs showed excellent antibacterial activity against bacterial pathogens. The PoAgNPs induced a dose-dependent cytotoxic activity against human adenocarcinoma breast cancer cell lines (MDA-MB-231), and apoptotic morphological changes were observed by dual staining. Additionally, PoAgNPs demonstrated better larvicidal activity against the larvae of Culex quinquefasciatus. Moreover, the hemolytic test indicated that the as-synthesized PoAgNPs are a safe and biocompatible nanomaterial with versatile bio-applications.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3790
Author(s):  
Pratama Jujur Wibawa ◽  
Muhammad Nur ◽  
Mukhammad Asy’ari ◽  
Wijanarka Wijanarka ◽  
Heru Susanto ◽  
...  

This research aimed to enhance the antibacterial activity of silver nanoparticles (AgNPs) synthesized from silver nitrate (AgNO3) using aloe vera extract. It was performed by means of incorporating AgNPs on an activated carbon nanoparticle (ACNPs) under ultrasonic agitation (40 kHz, 2 × 50 watt) for 30 min in an aqueous colloidal medium. The successful AgNPs synthesis was clarified with both Ultraviolet-Visible (UV-Vis) and Fourier Transform Infrared (FTIR) spectrophotometers. The successful AgNPs–ACNPs incorporation and its particle size analysis was performed using Transmission Electron Microscope (TEM). The brown color suspension generation and UV-Vis’s spectra maximum wavelength at around 480 nm confirmed the existence of AgNPs. The particle sizes of the produced AgNPs were about 5 to 10 nm in the majority number, which collectively surrounded the aloe vera extract secondary metabolites formed core-shell like nanostructure of 8.20 ± 2.05 nm in average size, while ACNPs themselves were about 20.10 ± 1.52 nm in average size formed particles cluster, and 48.00 ± 8.37 nm in average size as stacking of other particles. The antibacterial activity of the synthesized AgNPs and AgNPs-immobilized ACNPs was 57.58% and 63.64%, respectively (for E. coli); 61.25%, and 93.49%, respectively (for S. aureus). In addition, when the AgNPs-immobilized ACNPs material was coated on the cotton and polyester fabrics, the antibacterial activity of the materials changed, becoming 19.23% (cotton; E. coli), 31.73% (polyester; E. coli), 13.36% (cotton; S. aureus), 21.15% (polyester; S. aureus).


2019 ◽  
Vol 9 (7) ◽  
pp. 1310 ◽  
Author(s):  
Kerstin Hauke ◽  
Johannes Kehren ◽  
Nadine Böhme ◽  
Sinje Zimmer ◽  
Thorsten Geisler

In the last decades, Raman spectroscopy has become an important tool to identify and investigate minerals, gases, glasses, and organic material at room temperature. In combination with high-temperature and high-pressure devices, however, the in situ investigation of mineral transformation reactions and their kinetics is nowadays also possible. Here, we present a novel approach to in situ studies for the sintering process of silicate ceramics by hyperspectral Raman imaging. This imaging technique allows studying high-temperature solid-solid and/or solid-melt reactions spatially and temporally resolved, and opens up new avenues to study and visualize high-temperature sintering processes in multi-component systems. After describing in detail the methodology, the results of three application examples are presented and discussed. These experiments demonstrate the power of hyperspectral Raman imaging for in situ studies of the mechanism(s) of solid-solid or solid-melt reactions at high-temperature with a micrometer-scale resolution as well as to gain kinetic information from the temperature- and time-dependent growth and breakdown of minerals during isothermal or isochronal sintering.


2012 ◽  
Vol 1371 ◽  
Author(s):  
M.I. Hernández-Castillo ◽  
O. Zaca-Moran ◽  
P. Zaca-Moran ◽  
M. Rojas-López ◽  
V.L. Gayou ◽  
...  

ABSTRACTBy using the citrate reduction procedure we have synthesized Ag nanoparticles, applying several conditions of preparation, being after characterized by UV-visible spectrophotometry. Following a logical sequence, the starting experiment was realized varying the reaction time, after that it was varied the concentration of the reductor agent, and finally it was varied the volume of the reductor agent. According to this methodology, TEM measurements show that firstly we have nanostructures with different shape and size, whereas in the last part of the experiment we have Ag nanoparticles with homogeneous shape and size.


2016 ◽  
Vol 616 ◽  
pp. 366-374 ◽  
Author(s):  
Mihwa Seo ◽  
Jung Soo Kim ◽  
Jung Gyu Lee ◽  
Shin Beom Kim ◽  
Sang Man Koo

Sign in / Sign up

Export Citation Format

Share Document