scholarly journals Study of Heterogeneous Plasma Created by Magneto-Plasma Compressor and Erosive Capillary Discharge

2021 ◽  
Vol 2100 (1) ◽  
pp. 012006
Author(s):  
A I Klimov ◽  
N K Belov ◽  
V G Brovkin ◽  
A S Pashchina

Abstract Magneto-plasma compressor with a pulsed capillary erosive plasma generator (MPC-EP) has been designed, manufactured and tested at the first time. This MPC-EP was used to study the physical properties of a high-energy long-lived heterogeneous plasma (ELHP) created by pulsed capillary erosive plasma generator (EP) at the wide range of pressure and temperature. The results of measurements of the parameters of the shock wave created by the MPC-EP, as well as optical spectroscopy and soft X-ray spectroscopy are presented.

1999 ◽  
Vol 14 (9) ◽  
pp. 3489-3492 ◽  
Author(s):  
R. Goswami ◽  
S. Sampath ◽  
H. Herman ◽  
J. B. Parise

Shock synthesis of nanocrystalline Si was accomplished for the first time using thermal spray in which Si powder is injected into a high-energy flame where the particles melt and accelerate to impact on the substrate. A stream of molten Si particles impacted onto Si wafers of two orientations (100) and (111). The shock wave generated by the sudden impact of the droplets propagated through the underlying Si layer, which experienced a phase transition to a high-pressure form of Si due to propagation of the shock wave. The metastable high-pressure form of Si then transformed to metastable Si-IX, Si-IV (hexagonal diamond-Si), R-8, and BC-8 phases as evidenced by transmission electron microscopy and x-ray diffraction studies. Back-transformed metastable Si grains, with a size range from 2 to 5 nm, were found to be dispersed within Si-I (cubic diamond-Si). The metastable phases formed mostly in deposits on the (100) substrate compared to those of the (111) substrate orientations. This behavior can be correlated with the anisotropic nature of the pressure-induced transformations of Si-I.


2013 ◽  
Vol 46 (5) ◽  
pp. 1508-1512 ◽  
Author(s):  
Byron Freelon ◽  
Kamlesh Suthar ◽  
Jan Ilavsky

Coupling small-angle X-ray scattering (SAXS) and ultra-small-angle X-ray scattering (USAXS) provides a powerful system of techniques for determining the structural organization of nanostructured materials that exhibit a wide range of characteristic length scales. A new facility that combines high-energy (HE) SAXS and USAXS has been developed at the Advanced Photon Source (APS). The application of X-rays across a range of energies, from 10 to 50 keV, offers opportunities to probe structural behavior at the nano- and microscale. An X-ray setup that can characterize both soft matter or hard matter and high-Zsamples in the solid or solution forms is described. Recent upgrades to the Sector 15ID beamline allow an extension of the X-ray energy range and improved beam intensity. The function and performance of the dedicated USAXS/HE-SAXS ChemMatCARS-APS facility is described.


Author(s):  
Frédéric Marin

Astronomical X-ray polarimetry was first explored in the end of the 60's by pioneering rocket instruments. The craze arising from the first discoveries on stellar and supernova remnant X-ray polarization led to the addition of X-ray polarimeters on-board of early satellites. Unfortunately, the inadequacy of the diffraction and scattering technologies required to measure polarization with respect to the constraints driven by X-ray mirrors and detectors, coupled to long integration times, slowed down the field for almost 40 years. Thanks to the development of new, highly sensitive, compact X-ray polarimeters in the beginning of the 2000's, the possibility to observe astronomical X-ray polarization is rising again and scientists are now ready to explore the high energy sky thanks to modern X-ray polarimeters. In the forthcoming years, several X-ray missions (both rockets, balloons and satellites) will open a new observational windows. A wind of renewal blows over the area of X-ray polarimetry and this paper presents for the first time a quantitative assessment, all based on scientific literature, of the growth of interest for astronomical X-ray polarimetry.


1995 ◽  
Vol 395 ◽  
Author(s):  
S. A. Ustin ◽  
L. Lauhon ◽  
K. A. Brown ◽  
D. Q. Hu ◽  
W. Ho

ABSTRACTHighly oriented aluminum nitride (0001) films have been grown on Si(001) and Si (111) substrates at temperatures between 550° C and 775° C with dual supersonic molecular beam sources. Triethylaluminum (TEA;[(C2H5)3Al]) and ammonia (NH3) were used as precursors. Hydrogen, helium, and nitrogen were used as seeding gases for the precursors, providing a wide range of possible kinetic energies for the supersonic beams due to the disparate masses of the seed gases. Growth rates of AIN were found to depend strongly on the substrate orientation and the kinetic energy of the incident precursor; a significant increase in growth rate is seen when seeding in hydrogen or helium as opposed to nitrogen. Growth rates were 2–3 times greater on Si(001) than on Si(111). Structural characterization of the films was done by reflection high energy electron diffraction (RHEED) and x-ray diffraction (XRD). X-ray rocking curve (XRC) full-width half-maxima (FWHM) were seen as small as 2.5°. Rutherford back scattering (RBS) was used to determine the thickness of the films and their chemical composition. Films were shown to be nitrogen rich, deviating from perfect stoichiometry by 10%–20%. Surface analysis was performed by Auger electron spectroscopy (AES).


2001 ◽  
Vol 19 (2) ◽  
pp. 285-293 ◽  
Author(s):  
T.A. PIKUZ ◽  
A. YA. FAENOV ◽  
M. FRAENKEL ◽  
A. ZIGLER ◽  
F. FLORA ◽  
...  

The shadow monochromatic backlighting (SMB) scheme, a modification of the well-known soft X-ray monochromatic backlighting scheme, is proposed. It is based on a spherical crystal as the dispersive element and extends the traditional scheme by allowing one to work with a wide range of Bragg angles and thus in a wide spectral range. The advantages of the new scheme are demonstrated experimentally and supported numerically by ray-tracing simulations. In the experiments, the X-ray backlighter source is a laser-produced plasma, created by the interaction of an ultrashort pulse, Ti:Sapphire laser (120 fs, 3–5 mJ, 1016 W/cm2 on target) or a short wavelength XeCl laser (10 ns, 1–2 J, 1013 W/cm2 on target) with various solid targets (Dy, Ni + Cr, BaF2). In both experiments, the X-ray sources are well localized spatially (∼20 μm) and are spectrally tunable in a relatively wide wavelength range (λ = 8–15 Å). High quality monochromatic (δλ/λ ∼ 10−5–10−3) images with high spatial resolution (up to ∼4 μm) over a large field of view (a few square millimeters) were obtained. Utilization of spherically bent crystals to obtain high-resolution, large field, monochromatic images in a wide range of Bragg angles (35° < Θ < 90°) is demonstrated for the first time.


2004 ◽  
Vol 194 ◽  
pp. 208-208
Author(s):  
J. M. Torrejón ◽  
I. Kreykenbohni ◽  
A. Orr ◽  
L. Titarchuk ◽  
I. Negueruela

We present an analysis of archival RXTE and BeppoSAX data of the X-ray source 4U2206+54. For the first time, high energy data (≥ 30 keV) is analyzed. The data is well described by comptonization models in which seed photons with temperatures between 1.1 keV arid 1.5 keV are comptonized by a hot plasma at 50 keV thereby producing a hard tail which extends up to 100 keV. From luminosity arguments it is shown that the area of the soft photons source must be small (r ≈ 1 km) and that the presence of an accretion disk in this system is unlikely. Here we report on the possible existence of a cyclotron line around 30 keV . The presence of a neutron star in the system is strongly favored by the available data.


Proceedings ◽  
2019 ◽  
Vol 17 (1) ◽  
pp. 9
Author(s):  
Ka-Wah Wong ◽  
Rodrigo S. Nemmen ◽  
Jimmy A. Irwin ◽  
Dacheng Lin

The nearby M87 hosts an exceptional relativistic jet. It has been regularly monitored in radio to TeV bands, but little has been done in hard X-rays ≳10 keV. For the first time, we have successfully detected hard X-rays up to 40 keV from its X-ray core with joint Chandra and NuSTAR observations, providing important insights to the X-ray origins: from the unresolved jet or the accretion flow. We found that the hard X-ray emission is significantly lower than that predicted by synchrotron self-Compton models introduced to explain very-high-energy γ -ray emission above a GeV. We discuss recent models to understand these high energy emission processes.


Author(s):  
Jonathan Almer

Acquisition of microstructural information during realistic service conditions is an ongoing need for fundamental materials insight and computational input. In addition, for engineering applications it is often important to be able to study materials over a wide range of penetration depths, from the surface to bulk. In this presentation we discuss developments at the Sector 1-ID beamline of the Advanced Photon Source (APS) to utilize high-energy x-ray scattering for such studies. The use of high-energies (~80 keV) provides a highly penetrating probe, with sampling depths up to several mm in most materials. Through the development and use of high-energy optics, we can perform both small- and wide-angle scattering (SAXS/WAXS), to probe a large range of sample dimensions in reciprocal space (ranging from Angstroms to hundreds of nanometers), with real space resolutions ranging from microns to mm.


Membranes ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 163 ◽  
Author(s):  
Casimiro ◽  
Ferreira ◽  
Leal ◽  
Pereira ◽  
Monteiro

The use of ionizing radiation processing technologies has proven to be one of the most versatile ways to prepare a wide range of membranes with specific tailored functionalities, thus enabling them to be used in a variety of industrial, environmental, and biological applications. The general principle of this clean and environmental friendly technique is the use of various types of commercially available high-energy radiation sources, like 60Co, X-ray, and electron beam to initiate energy-controlled processes of free-radical polymerization or copolymerization, leading to the production of functionalized, flexible, structured membranes or to the incorporation of functional groups within a matrix composed by a low-cost polymer film. The present manuscript describes the state of the art of using ionizing radiation for the preparation and functionalization of polymer-based membranes for biomedical and environmental applications.


2019 ◽  
Vol 627 ◽  
pp. A2
Author(s):  
Gregor Rauw ◽  
Yaël Nazé ◽  
Fran Campos

Aims. The Cyg OB2 #5 system is thought to consist of a short-period (6.6 d) eclipsing massive binary orbited by an OB-star with a period of ~6.7 yr; these stars in turn are orbited by a distant early B-star with a period of thousands of years. However, while the inner binary has been studied many times, information is missing on the other stars, in particular the third star whose presence was indirectly postulated from recurrent modulations in the radio domain. Besides, to this date, the X-ray light curve could not be fully interpreted, for example in the framework of colliding-wind emission linked to one of the systems. Methods. We obtained new optical and X-ray observations of Cyg OB2 #5, which we combined to archival data. We performed a thorough and homogeneous investigation of all available data, notably revisiting the times of primary minimum in photometry. Results. In the X-ray domain, XMM-Newton provides scattered exposures over ~5000 d whilst Swift provides a nearly continuous monitoring for the last couple of years. Although the X-ray light curve reveals clear variability, no significant period can be found hence the high-energy emission cannot be explained solely in terms of colliding winds varying along either the short or intermediate orbits. The optical data reveal for the first time clear signs of reflex motion. The photometry indicates the presence of a 2366 d (i.e. 6.5 yr) period while the associated radial velocity changes are detected at the 3σ level in the systemic velocity of the He II λ 4686 emission line. With the revised period, the radio light curve is interpreted consistently in terms of a wind interaction between the inner binary and the tertiary star. From these optical and radio data, we derive constraints on the physical properties of the tertiary star and its orbit.


Sign in / Sign up

Export Citation Format

Share Document