Technology Application to MHPS Large Flame F Series Gas Turbine

Author(s):  
Kiyoshi Fujimoto ◽  
Yuya Fukunaga ◽  
Satoshi Hada ◽  
Toshishige Ai ◽  
Masanori Yuri ◽  
...  

The development of gas turbines, Mitsubishi Hitachi Power Systems, Ltd. (MHPS) has continued to pursue and contribute to society in terms of global environmental conservation and stable energy supply. MHPS leverages its abundant gas turbine operation experience and takes advantage of its extensive advanced technologies research on the Japanese National Project. MHPS has been participating in this project since 2004. Recent years’ achievements include the demonstration of a gas turbine combined cycle (GTCC) efficiency in excess of 62% created by increasing the turbine inlet temperature to the 1,600°C class in the M501J in 2011. The Latest M701F incorporates “J” gas turbine technologies, already applied to actual equipment, for efficiency improvement. It also applies air-cooled combustor technologies successfully validated in the G class, for increased flexibility. The 1st unit started commercial operation in 2015 and currently 4 units has accumulated more than 46,000 actual operating hours collectively. MHPS is making the upgrading program for existing F-series gas turbines. The proven technology verified in the M501J and developed in the National project increases efficiency and reliability. This paper explains the features and development status of Latest M701F gas turbine, and explains upgrade program for existing F-series gas turbines.

Author(s):  
Katsuyoshi Tada ◽  
Kei Inoue ◽  
Tomo Kawakami ◽  
Keijiro Saitoh ◽  
Satoshi Tanimura

Gas-turbine combined-cycle (GTCC) power generation is clean and efficient, and its demand will increase in the future from economic and social perspectives. Raising turbine inlet temperature is an effective way to increase combined cycle efficiency and contributes to global environmental conservation by reducing CO2 emissions and preventing global warming. However, increasing turbine inlet temperature can lead to the increase of NOx emissions, depletion of the ozone layer and generation of photochemical smog. To deal with this issue, MHPS (MITSUBISHI HITACHI POWER SYSTEMS) and MHI (MITSUBISHI HEAVY INDUSTRIES) have developed Dry Low NOx (DLN) combustion techniques for high temperature gas turbines. In addition, fuel flexibility is one of the most important features for DLN combustors to meet the requirement of the gas turbine market. MHPS and MHI have demonstrated DLN combustor fuel flexibility with natural gas (NG) fuels that have a large Wobbe Index variation, a Hydrogen-NG mixture, and crude oils.


Author(s):  
Kentaro Suzuki ◽  
Yoshikazu Matsumura ◽  
Kazumasa Takata ◽  
Satoshi Hada ◽  
Masanori Yuri ◽  
...  

Mitsubishi Hitachi Power Systems, Ltd. (MHPS) has continued to contribute to the preservation of the global environment and the stable supply of energy through the constant development of gas turbines. The contribution is based on the abundant operating results, research, and verification of state-of-the-art technology. Since 2014 MHPS has been using progressive knowledge obtained from the Japanese National Project’s “1700°C Class Ultrahigh-Temperature Gas Turbine Component Technology Development.” The highly-efficient M501J gas turbine was successfully developed and has achieved the world’s first turbine inlet temperature of 1600°C because of this effort. Verification operation of the M501J at T-point, the verification plant, which MHPS owns in Takasago, started in 2011. Thereafter, M501J gas turbines have been delivered all over the world, and have accumulated more than 500,000 Actual Operating Hours (AOH). To further improve the efficiency and power output of the gas turbine combined cycle (GTCC), a new enhanced air-cooled system for the combustor was installed replacing the steam-cooled system employed in the J-series. The compressor was also redesigned with an advanced design approach that ensures the mechanical soundness of the parts and the performance upgrade in inlet flow as well as start-up characteristics.


Author(s):  
M. Araki ◽  
J. Masada ◽  
S. Hada ◽  
E. Ito ◽  
K. Tsukagoshi

Mitsubishi Heavy Industries, Ltd. (MHI) developed a 1100°C class D-type gas turbine in the 1980s and constructed the world’s first successful large-scale combined cycle power plant. Since then, MHI has developed the F and G-type gas turbines with higher turbine inlet temperature and has delivered these units worldwide accumulating successful commercial operations. MHI is currently participating in a Japanese National Project to promote the development of component technology for the next generation 1700°C class gas turbine. MHI recently developed a 1600°C class J-type gas turbine utilizing some of the technologies developed in the National Project. This paper discusses the history and evolution of MHI large frame gas turbine for power generation and the 1600°C class J-type gas turbine update, including the engine specification, verification and trial operation status.


2021 ◽  
Author(s):  
Takashi Nishiumi ◽  
Hirofumi Ohara ◽  
Kotaro Miyauchi ◽  
Sosuke Nakamura ◽  
Toshishige Ai ◽  
...  

Abstract In recent years, MHPS achieved a NET M501J gas turbine combined cycle (GTCC) efficiency in excess of 62% operating at 1,600°C, while maintaining NOx under 25ppm. Taking advantage of our gas turbine combustion design, development and operational experience, retrofits of earlier generation gas turbines have been successfully applied and will be described in this paper. One example of the latest J-Series technologies, a conventional pilot nozzle was changed to a premix type pilot nozzle for low emission. The technology was retrofitted to the existing F-Series gas turbines, which resulted in emission rates of lower than 9ppm NOx(15%O2) while maintaining the same Turbine Inlet Temperature (TIT: Average Gas Temperature at the exit of the transition piece). After performing retrofitting design, high pressure rig tests, the field test prior to commercial operation was conducted on January 2019. This paper describes the Ultra-Low NOx combustor design features, retrofit design, high pressure rig test and verification test results of the upgraded M501F gas turbine. In addition, it describes another upgrade of turbine to improve efficiency and of combustion control system to achieve low emissions. Furthermore it describes the trouble-free upgrade of seven (7) units, which was completed by utilizing MHPS integration capabilities, including handling all the design, construction and service work of the main equipment, plant and control systems.


Author(s):  
Satoshi Hada ◽  
Masanori Yuri ◽  
Junichiro Masada ◽  
Eisaku Ito ◽  
Keizo Tsukagoshi

MHI recently developed a 1600°C class J-type gas turbine, utilizing some of the technologies developed in the National Project to promote the development of component technology for the next generation 1700°C class gas turbine. This new frame is expected to achieve higher combined cycle efficiency and will contribute to reduce CO2 emissions. The target combined cycle efficiency of the J type gas turbine will be above 61.5% (gross, ISO standard condition, LHV) and the 1on1 combined cycle output will reach 460MW for 60Hz engine and 670MW for 50Hz engine. This new engine incorporates: 1) A high pressure ratio compressor based on the advanced M501H compressor, which was verified during the M501H development in 1999 and 2001. 2) Steam cooled combustor, which has accumulated extensive experience in the MHI G engine (> 1,356,000 actual operating hours). 3) State-of-art turbine designs developed through the 1700°C gas turbine component technology development program in Japanese National Project for high temperature components. This paper discusses the technical features and the updated status of the J-type gas turbine, especially the operating condition of the J-type gas turbine in the MHI demonstration plant, T-Point. The trial operation of the first M501J gas turbine was started at T-point in February 2011 on schedule, and major milestones of the trial operation have been met. After the trial operation, the first commercial operation has taken place as scheduled under a predominantly Daily-Start-and-Stop (DSS) mode. Afterward, MHI performed the major inspection in October 2011 in order to check the mechanical condition, and confirmed that the hot parts and other parts were in sound condition.


Author(s):  
J. E. Donald Gauthier

This paper describes the results of modelling the performance of several indirectly fired gas turbine (IFGT) power generation system configurations based on four gas turbine class sizes, namely 5 kW, 50 kW, 5 MW and 100 MW. These class sizes were selected to cover a wide range of installations in residential, commercial, industrial and large utility power generation installations. Because the IFGT configurations modelled consist of a gas turbine engine, one or two recuperators and a furnace; for comparison purpose this study also included simulations of simple cycle and recuperated gas turbine engines. Part-load, synchronous-speed simulations were carried out with generic compressor and turbine maps scaled for each engine design point conditions. The turbine inlet temperature (TIT) was varied from the design specification to a practical value for a metallic high-temperature heat exchanger in an IFGT system. As expected, the results showed that the reduced TIT can have dramatic impact on the power output and thermal efficiency when compared to that in conventional gas turbines. However, the simulations also indicated that several configurations can lead to higher performance, even with the reduced TIT. Although the focus of the study is on evaluation of thermodynamic performance, the implications of varying configurations on cost and durability are also discussed.


Author(s):  
Maher A. Elmasri

A fast, interactive, flexible computer program has been developed to facilitate system selection and design for gas turbine based power and cogeneration plants. A data base containing ISO performance information on forty-two gas turbines is coupled to an off-design model to predict engine characteristics for different site and installation parameters. A heat recovery steam generator (HRSG) model allows boiler size and cost to be estimated as a function of the system’s technical parameters. The model can handle HRSG’s with up to two live steam pressures plus a third feedheating/deaerating drum. Five basic types of combined cycle are covered with up to four different process steam streams for cogeneration or gas turbine injection. Two additional feedheating steam bleeds are supported for condensing combined cycles. The program is intelligent with some internal decision making capabilities regarding process steam sourcing and flow directions and will automatically select the appropriate heat and mass balance procedures to cover a wide variety of process flow schematics. The program provides plotter outputs to show the cycle process flow schematic, T-s and h-s diagrams, and HRSG temperature profiles. An application of GTPRO in analyzing some technical and economic performance trade-offs for two-pressure combined cycles is presented.


Author(s):  
Dale Grace ◽  
Thomas Christiansen

Unexpected outages and maintenance costs reduce plant availability and can consume significant resources to restore the unit to service. Although companies may have the means to estimate cash flow requirements for scheduled maintenance and on-going operations, estimates for unplanned maintenance and its impact on revenue are more difficult to quantify, and a large fleet is needed for accurate assessment of its variability. This paper describes a study that surveyed 388 combined-cycle plants based on 164 D/E-class and 224 F-class gas turbines, for the time period of 1995 to 2009. Strategic Power Systems, Inc. (SPS®), manager of the Operational Reliability Analysis Program (ORAP®), identified the causes and durations of forced outages and unscheduled maintenance and established overall reliability and availability profiles for each class of plant in 3 five-year time periods. This study of over 3,000 unit-years of data from 50 Hz and 60 Hz combined-cycle plants provides insight into the types of events having the largest impact on unplanned outage time and cost, as well as the risks of lost revenue and unplanned maintenance costs which affect plant profitability. Outage events were assigned to one of three subsystems: the gas turbine equipment, heat recovery steam generator (HRSG) equipment, or steam turbine equipment, according to the Electric Power Research Institute’s Equipment Breakdown Structure (EBS). Costs to restore the unit to service for each main outage cause were estimated, as were net revenues lost due to unplanned outages. A statistical approach to estimated costs and lost revenues provides a risk-based means to quantify the impact of unplanned events on plant cash flow as a function of class of gas turbine, plant subsystem, and historical timeframe. This statistical estimate of the costs of unplanned outage events provides the risk-based assessment needed to define the range of probable costs of unplanned events. Results presented in this paper demonstrate that non-fuel operation and maintenance costs are increased by roughly 8% in a typical combined-cycle power plant due to unplanned maintenance events, but that a wide range of costs can occur in any single year.


Author(s):  
F. L. Robson ◽  
D. J. Seery

The Department of Energy’s Federal Energy Technology Center (FETC) is sponsoring the Combustion 2000 Program aimed at introducing clean and more efficient advanced technology coal-based power systems in the early 21st century. As part of this program, the United Technologies Research Center has assembled a seven member team to identify and develop the technology for a High Performance Power Systems (HIPPS) that will provide in the near term, 47% efficiency (HHV), and meet emission goals only one-tenth of current New Source Performance Standards for coal-fired power plants. In addition, the team is identifying advanced technologies that could result in HIPPS with efficiencies approaching 55% (HHV). The HIPPS is a combined cycle that uses a coal-fired High Temperature Advanced Furnace (HITAF) to preheat compressor discharge air in both convective and radiant heaters. The heated air is then sent to the gas turbine where additional fuel, either natural gas or distillate, is burned to raise the temperature to the levels of modern gas turbines. Steam is raised in the HITAF and in a Heat Recovery Steam Generator for the steam bottoming cycle. With state-of-the-art frame type gas turbines, the efficiency goal of 47% is met in a system with more than two-thirds of the heat input furnished by coal. By using advanced aeroderivative engine technology, HIPPS in combined-cycle and Humid Air Turbine (HAT) cycle configurations could result in efficiencies of over 50% and could approach 55%. The following paper contains descriptions of the HIPPS concept including the HITAF and heat exchangers, and of the various gas turbine configurations. Projections of HIPPS performance, emissions including significant reduction in greenhouse gases are given. Application of HIPPS to repowering is discussed.


Author(s):  
Toshishige Ai ◽  
Carlos Koeneke ◽  
Hisato Arimura ◽  
Yoshinori Hyakutake

Mitsubishi Heavy Industries (MHI) G series gas turbine is the industry pioneer in introducing steam cooling technology for gas turbines. The first M501G unit started commercial operation in 1997 and to date, with 62 G units sold, MHI G fleet is the largest steam cooled fleet in the market. The existing commercial fleet includes 35 commercial units with more than 734,000 accumulated actual operating hours, and over 9,400 starts. Upgraded versions have been introduced in the 60 and 50Hz markets (M501G1 and M701G2 respectively). On a different arena, MHI is engaged since 2004 in a Japanese National Project for the development of 1,700°C (3092°F) class gas turbine. Several enhanced technologies developed through this Japanese National Project, including lower thermal conductivity TBC, are being retrofitted to the existing F and G series gas turbines. Retrofitting some of these technologies to the existing M501G1 together with the application of an F class air cooled combustion system will result in an upgraded air-cooled G class engine with increased power output and enhanced efficiency, while maintaining the same 1500°C (2732°F) Turbine Inlet Temperature (TIT). By using an open air cooling scheme, this upgraded machine represents a better match for highly cyclic applications with G class efficiency, while the highly reliable and durable steam cooled counterpart is still offered for more base-loaded applications. After performing various R&D tests, the verification process of the air cooled 60 Hz G gas turbine has moved to component testing in the in-house verification engine. The final verification test prior to commercial operation is scheduled for 2009. This article describes the design features and verification plan of the upgraded M501G gas turbine.


Sign in / Sign up

Export Citation Format

Share Document