scholarly journals Research on system modeling and motion control simulation of automatic power trowel

2021 ◽  
Vol 2125 (1) ◽  
pp. 012031
Author(s):  
Hao Xu ◽  
Yutian Zhu ◽  
Mo Chen ◽  
Zhao Liu

Abstract Aiming at the problems that the existing control researches on the power trowel are limited to the analysis of the motion principle and the open-loop control of some mechanisms, taking a hydraulically-driven ride-on power trowel as the research object, the closed-loop control method of the point-to-point motion of the power trowel is studied. After analyzing the motion principle of the power trowel, based on the assumption of elastic deformation of concrete, the dynamic model of a single trowel is established, and the relationship between the driving force, driving moment and hydraulic moment, velocity, and angular velocity of the trowel is obtained. The whole machine motion equation of the power trowel is deduced, the point-to-point state feedback control algorithm of the power trowel is studied, and a simulation model is built to verify the accuracy of the system model of the power trowel and the effectiveness of the control algorithm. This research can provide reference for the control method design of other complex motions of the power trowel.

2019 ◽  
Vol 04 (03n04) ◽  
pp. 1942003
Author(s):  
Mohsen Moradi Dalvand ◽  
Saeid Nahavandi ◽  
Robert D. Howe

The estimation of tension loads in multi-tendon continuum robots or catheters plays an important role not only in the design process but also in the control algorithm to avoid slack. An analytical tension loading model is developed that, for any given beam configuration within the workspace, calculates tendon tensions in [Formula: see text]-tendon continuum robots with general tendon positioning. The model accounts for the bending and axial compliance of the manipulator as well as tendon compliance. A 6-tendon continuum robot integrated with a stereo vision-based 3D reconstruction system is utilized to experimentally validate the proposed analytical model in open-loop control architecture. The proposed model demonstrates around 95% accuracy in estimating tendon tensions in a continuum robot with general tendon positioning and axial stretch in its tendons for all of the trials and experiments.


2016 ◽  
Vol 53 (4) ◽  
pp. 14-21
Author(s):  
K. Kroics ◽  
A. Sokolovs

Abstract The authors present the control principle of the multiphase interleaved DC-DC converter that can be used to vastly reduce output current ripple of the converter. The control algorithm can be easily implemented by using microcontroller without current loop in each phase. The converter works in discontinuous conduction mode (DCM) but close to boundary conduction mode (BCM). The DC-DC converter with such a control algorithm is useful in applications that do not require precise current adjustment. The prototype of the converter has been built. The experimental results of the current ripple are presented in the paper.


2011 ◽  
Vol 135-136 ◽  
pp. 1179-1182
Author(s):  
Jia Ao Yu ◽  
Min Cang Fu

The article tracks the fruit-trees robot, and analyzes the fruit-trees robot’s dual-motor control system. Based on the speed incremental PID closed-loop control algorithm of the step DC motor, the PID controller’s proportional coefficient, integral coefficient and differential coefficient is concluded. It demonstrates from the stimulations and experiments that the usage of speed incremental PID control do better at the response speed and stability than the open-loop control motor when the robot is run by a straight line on the ground at the 3000rpm.


2015 ◽  
Vol 816 ◽  
pp. 160-164
Author(s):  
Ivan Virgala ◽  
Michal Kelemen ◽  
Erik Prada ◽  
Tomáš Lipták

In the paper, we experimentally analyze a pneumatic actuator and possibilities of piston positioning. Paper shows mathematical model of pneumatic actuator. Actuator is experimentally tested and therefor experimental stand is assembled for the purposes of positioning of actuator piston. The changing parameters during the experiment are weight of load and pneumatic pressure. The results show how these parameters can have influence on precise positioning of pneumatic actuator. For experiment there is purposely used open loop control system. The aim of the study is not to show control method for positioning but to show influence of mentioned parameters.


2016 ◽  
Vol 28 (5) ◽  
pp. 646-653 ◽  
Author(s):  
Akira Abe ◽  
◽  
Keisuke Okabe ◽  

[abstFig src='/00280005/05.jpg' width='250' text='Photograph of the experimental setup' ] We present a simple antisway control method for a rotary crane, whose load can move in a two-dimensional plane. In particular, we investigate the suppression of residual sway motion of a rotary crane with a boom that performs point-to-point motion. In the proposed method, we attempt to generate the trajectory of the boom using a combination of polynomial and cycloidal functions. The profile of the generated trajectory depends on the coefficients of the polynomial function. Thus, it is necessary to tune the coefficients to minimize the sway motion in the two-dimensional plane as much as possible. We adopt a particle swarm optimization algorithm, an evolutionary computation technique, to tune the coefficients and then obtain the optimal trajectory. By rotating the boom along the optimal trajectory, the two-dimensional residual sway motion is suppressed, i.e., an open-loop control is realized. The effectiveness and feasibility of the proposed control scheme is demonstrated via simulations and experiments.


1997 ◽  
Vol 119 (3) ◽  
pp. 590-594 ◽  
Author(s):  
Emil Simiu ◽  
Marek Franaszek

The performance of certain nonlinear stochastic systems is deemed acceptable if during a specified time interval, the systems have sufficiently low probabilities of escape from a preferred region of phase space. We propose an open-loop control method for reducing these probabilities. The method is applicable to stochastic systems whose dissipation- and excitation-free counterparts have homoclinic or heteroclinic orbits. The Melnikov relative scale factors are system properties containing information on the frequencies of the random forcing spectral components that are most effective in inducing escapes. Numerical simulations show that substantial advantages can be achieved in some cases by designing control systems that take into account the information contained in the Melnikov scale factors.


Author(s):  
Alan Whitman ◽  
Garrett Clayton ◽  
Alexander Poultney ◽  
Hashem Ashrafiuon

A novel open-loop control method is presented for mobile robots based on an asymptotic inverse dynamic solution and trajectory planning. The method is based on quantification of sliding by a small nondimensional parameter. Asymptotic expansion of the equations yields the dominant nonslip solution along with a first-order correction for sliding. A trajectory planning is then introduced based on transitional circles between the robot initial states and target reference trajectory. The transitional trajectory ensures smooth convergence of the robot states to the target reference trajectory, which is essential for open-loop control. Experimental results with a differential drive mobile robot demonstrate the significant improvement of the controller performance when the first-order correction is included.


Sign in / Sign up

Export Citation Format

Share Document