Antisway Control for a Rotary Crane by Using Evolutionary Computation

2016 ◽  
Vol 28 (5) ◽  
pp. 646-653 ◽  
Author(s):  
Akira Abe ◽  
◽  
Keisuke Okabe ◽  

[abstFig src='/00280005/05.jpg' width='250' text='Photograph of the experimental setup' ] We present a simple antisway control method for a rotary crane, whose load can move in a two-dimensional plane. In particular, we investigate the suppression of residual sway motion of a rotary crane with a boom that performs point-to-point motion. In the proposed method, we attempt to generate the trajectory of the boom using a combination of polynomial and cycloidal functions. The profile of the generated trajectory depends on the coefficients of the polynomial function. Thus, it is necessary to tune the coefficients to minimize the sway motion in the two-dimensional plane as much as possible. We adopt a particle swarm optimization algorithm, an evolutionary computation technique, to tune the coefficients and then obtain the optimal trajectory. By rotating the boom along the optimal trajectory, the two-dimensional residual sway motion is suppressed, i.e., an open-loop control is realized. The effectiveness and feasibility of the proposed control scheme is demonstrated via simulations and experiments.

2021 ◽  
Vol 2125 (1) ◽  
pp. 012031
Author(s):  
Hao Xu ◽  
Yutian Zhu ◽  
Mo Chen ◽  
Zhao Liu

Abstract Aiming at the problems that the existing control researches on the power trowel are limited to the analysis of the motion principle and the open-loop control of some mechanisms, taking a hydraulically-driven ride-on power trowel as the research object, the closed-loop control method of the point-to-point motion of the power trowel is studied. After analyzing the motion principle of the power trowel, based on the assumption of elastic deformation of concrete, the dynamic model of a single trowel is established, and the relationship between the driving force, driving moment and hydraulic moment, velocity, and angular velocity of the trowel is obtained. The whole machine motion equation of the power trowel is deduced, the point-to-point state feedback control algorithm of the power trowel is studied, and a simulation model is built to verify the accuracy of the system model of the power trowel and the effectiveness of the control algorithm. This research can provide reference for the control method design of other complex motions of the power trowel.


Author(s):  
Bao Tri Diep ◽  
Quoc Hung Nguyen ◽  
Thanh Danh Le

The purpose of this paper is to design a control algorithm for a 2-DoF rotary joystick model. Firstly, the structure of the joystick, which composes of two magneto-rheological fluid actuators (shorten MRFA) with optimal configuration coupled perpendicularly by the gimbal mechanism to generate the friction torque for each independent rotary movement, is introduced. The control strategy of the designed joystick is then suggested. Really, because of two independent rotary movements, it is necessary to design two corresponding controllers. Due to hysteresis and nonlinear dynamic characteristics of the MRFA, controllers based an accurate dynamic model are difficult to realize. Hence, to release this issue, the proposed controller (named self-turning fuzzy controllers-STFC) will be built through the fuzzy logic algorithm in which the parameters of controllers are learned and trained online by Levenberg-Marquardt training algorithm. Finally, an experimental apparatus will be constructed to assess the effectiveness of the force feedback controls. Herein, three experimental cases are performed to compare the control performance of open-loop and close-loop control method, where the former is done through relationship between the force at the knob and the current supplied to coil while the latter is realized based on the proposed controller and PID controller. The experimental results provide strongly the ability of the proposed controller, meaning that the STFC is robust and tracks well the desirable force with high accuracy compared with both the PID controller and the open-loop control method.


2018 ◽  
Vol 18 (07) ◽  
pp. 1840017 ◽  
Author(s):  
QIN YAO ◽  
XUMING ZHANG

Flexible needle has been widely used in the therapy delivery because it can advance along the curved lines to avoid the obstacles like important organs and bones. However, most control algorithms for the flexible needle are still limited to address its motion along a set of arcs in the two-dimensional (2D) plane. To resolve this problem, this paper has proposed an improved duty-cycled spinning based three-dimensional (3D) motion control approach to ensure that the beveled-tip flexible needle can track a desired trajectory to reach the target within the tissue. Compared with the existing open-loop duty-cycled spinning method which is limited to tracking 2D trajectory comprised of few arcs, the proposed closed-loop control method can be used for tracking any 3D trajectory comprised of numerous arcs. Distinctively, the proposed method is independent of the tissue parameters and robust to such disturbances as tissue deformation. In the trajectory tracking simulation, the designed controller is tested on the helical trajectory, the trajectory generated by rapidly-exploring random tree (RRT) algorithm and the helical trajectory. The simulation results show that the mean tracking error and the target error are less than 0.02[Formula: see text]mm for the former two kinds of trajectories. In the case of tracking the helical trajectory, the mean tracking error target error is less than 0.5[Formula: see text]mm and 1.5[Formula: see text]mm, respectively. The simulation results prove the effectiveness of the proposed method.


1985 ◽  
Vol 107 (3) ◽  
pp. 200-206 ◽  
Author(s):  
Y. Sakawa ◽  
A. Nakazumi

In this paper we first derive a dynamical model for the control of a rotary crane, which makes three kinds of motion (rotation, load hoisting, and boom hoisting) simultaneously. The goal is to transfer a load to a desired place in such a way that at the end of transfer the swing of the load decays as quickly as possible. We first apply an open-loop control input to the system such that the state of the system can be transferred to a neighborhood of the equilibrium state. Then we apply a feedback control signal so that the state of the system approaches the equilibrium state as quickly as possible. The results of computer simulation prove that the open-loop plus feedback control scheme works well.


Energies ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 579 ◽  
Author(s):  
Luis Galván ◽  
Juan Navarro ◽  
Eduardo Galván ◽  
Juan Carrasco ◽  
Andrés Alcántara

This paper presents a method to optimally use an energy storage system (such as a battery) on a microgrid with load and photovoltaic generation. The purpose of the method is to employ the photovoltaic generation and energy storage systems to reduce the main grid bill, which includes an energy cost and a power peak cost. The method predicts the loads and generation power of each day, and then searches for an optimal storage behavior plan for the energy storage system according to these predictions. However, this plan is not followed in an open-loop control structure as in previous publications, but provided to a real-time decision algorithm, which also considers real power measures. This algorithm considers a series of device priorities in addition to the storage plan, which makes it robust enough to comply with unpredicted situations. The whole proposed method is implemented on a real-hardware test bench, with its different steps being distributed between a personal computer and a programmable logic controller according to their time scale. When compared to a different state-of-the-art method, the proposed method is concluded to better adjust the energy storage system usage to the photovoltaic generation and general consumption.


2006 ◽  
Vol 510-511 ◽  
pp. 734-737
Author(s):  
Hye Jin Lee ◽  
Nak Kyu Lee ◽  
Hyoung Wook Lee ◽  
Hoon Jae Park ◽  
Tae Hoon Choi

Many micro technology researches have been concentrated in the field of materials and a process field. But the properties of micro materials should be understood to give still more advanced results. Among the various material properties, mechanical material properties such as tensile strength, elastic modulus, etc., is the basic property. To measure mechanical properties in micro or nano scale, actuating must be very precise. Piezo is a famous actuator, frequently used to measure very precise mechanical properties in micro research field. But piezo has a nonlinearity called hysteresis. Not precision result is caused because of this hysteresis property in piezo actuator. Therefore feedback control method is used in many researches to prevent this hysteresis of piezo actuator. Feedback control method produces a good result in processing view, but causes a loss in a resolution view. In this paper, hysteresis is compensated by using an open loop control method. To apply the open loop control method to piezo actuated nano scale material testing machine, hysteresis property is modeled in a mathematical function, and a compensated control input is constructed using inverse function of original data. The reliability of this control method can be confirmed by testing nickel, aluminum, and copper micro thin foil that is used in MEMS material broadly. If these MEMS material properties are used in a MEMS research field, more economical and high performance MEMS materials can be obtained.


1991 ◽  
Vol 113 (3) ◽  
pp. 438-443 ◽  
Author(s):  
S. P. Bhat ◽  
D. K. Miu

Using the Laplace domain synthesis technique documented in earlier publications, experiments on the closed-loop point-to-point position control of a flexible beam are presented. Two different approaches are described, a feed-forward control and an iterative open-loop control. Solution to the robustness problems encountered during actual implementation is also demonstrated.


2011 ◽  
Vol 22 (12) ◽  
pp. 1393-1407 ◽  
Author(s):  
HONGYUE DU

This paper investigates the modified function projective synchronization (MFPS) in drive-response dynamical networks (DRDNs) with different nodes, which means that systems in nodes are strictly different. An adaptive open-plus-closed-loop (AOPCL) control method is proposed, which is a practically realizable method and can overcome the model mismatched to achieve synchronization. It is well known that each of the close-loop and open-loop control method possesses some advantages and disadvantages. By combining their advantages, the open-plus-closed-loop (OPCL) control method was proposed by Jackson and Grosu. For arbitrary nonlinear dynamic systems, dx/dt = F(x,t), Jackson and Grosu proved that there exists solutions, x(t), in the neighborhood of any arbitrary goal dynamics g(t) that are entrained to g(t), through the use of an additive controlling action, K(g,x,t) = H(dg/dt,g) + C(g,t)(g(t) - x), which is the sum of the open-loop action, H(dg/dt,g), and a suitable linear closed-loop (feedback) action C(g,t). This method is a practically realizable method and robust to limited accuracy of data and effects of noise. The AOPCL control method preserve the merits of OPCL control method and its closed loop control part can be automatically adapted to suitable constants. Considering time-delays are always unavoidably in the practical situations, MFPS in DRDNs with time-varying coupling delayed is further investigated by the proposed method. Corresponding numerical simulations are performed to verify and illustrate the analytical results.


Sign in / Sign up

Export Citation Format

Share Document