scholarly journals Crowd Emergency Evacuation Simulation Time Analysis via Obstacle Optimization Strategy

2021 ◽  
Vol 2129 (1) ◽  
pp. 012045
Author(s):  
S. Hamizan ◽  
S Roselina ◽  
H Habibollah ◽  
Y Yusliza ◽  
M Y Lizawati

Abstract The crowd evacuation simulation is essential to provide important results for occupants, especially in the large capacity building compared to the human fire drill exercise. The strategy of evacuation such as the use of obstacles may need to be adapted by many organizations as an aid to help in visualizing and estimating the evacuation time during an emergency. During certain crowd events, they may consider the various setting of the object to ensure smoothness and effective crowd evacuation flow. In this paper, it aims to provide the simulation with 100-1000 agents and testing with obstacle using Anylogic tool and analysis of evacuation time validated using SPSS. The results show that the placement of obstacles near the exit way indeed can reduce the evacuation time and complies with the anti-arching phenomenon during evacuation.

2018 ◽  
Vol 10 (7) ◽  
pp. 168781401878509 ◽  
Author(s):  
Yung-Piao Chiu ◽  
Yan-Chyuan Shiau ◽  
Yi-Hsuan Lai

With the increasing number of domestic buildings, the importance of safety evacuation in case of fire in the buildings has been aware. Occupants in a building will crowd at exit(s) when they evacuate in disasters. The content of this study includes the following: (1) to conduct a literature review on severe stampedes in history, identifying the number of casualties, and to explore existing research on crowd evacuation; (2) to examine the applicability of software packages EXODUS and Unity for simulating occupant evacuation using them for simulations under identical conditions; and (3) to construct simulated evacuation environments using Unity and perform simulations with different combinations of occupant number, space size, exit size, and flow diverter size. The simulation results found that placing a flow diverter in front of the exit could reduce the evacuation time effectively. The best result was observed when the width of the door is close to the width of the flow diverter; it can reduce the evacuation time by about 25%. When more than 60 people were emptying through an exit below 120 cm width, the blocking happened regardless of whether a flow diverter was placed.


2020 ◽  
Vol 8 (5) ◽  
pp. 1187-1192

Crowd simulation is an active research domain and is crucial for simulating crowd behaviour in certain condition such as normal or panic situation. The simulation is to show the interaction between the individual in a crowd. Nowadays, there are many kinds of scenarios as well as simulation softwares that can be adapted to simulate a crowd simulation such as during emergency situation e.g. building evacuation. Crowd simulation in three-dimensional platform is fairly important in order to have a more realistic looks and movement of the crowd in one particular environment. The evacuation simulation is useful for the crowd in one confinement to seek for a safe exit path in shortest time possible and thus increase the occupant’s safety. The evacuation time is said to be in safe condition if all the evacuees successfully can get through the exit in minimal time. To aid in minimal exit time, the concept of faster-is-slower (bottleneck) must be solved as it can lead to more waiting time or delay during evacuation process. In this paper, it will discuss about the crowd simulation behavior, crowd simulation based on agent-based model, existing crowd simulation tools and the result of simulating the three-dimensional (3D) crowd evacuation time based on a number of exits variation in panic situation. The tools used to carry out the experiment is Anylogic software whereby the results show that it adheres to shorter evacuation time when the number of exit increases. The 3D layout design was following the original layout the faculty’s lower ground floor where the classrooms are mostly resided. The simulation is useful in order to estimate of evacuation time with different total number of exits to alleviate the faster-is-slower effect in case of any emergency situation happens at the faculty building.


2021 ◽  
Author(s):  
Xuan Wang ◽  
Yan Mao ◽  
Jing Jing Xiong ◽  
Wu He

Abstract The level of spatial knowledge integrity of a population is crucial for fire escape behavior. The use of appropriate interventions for people with different levels of spatial knowledge can effectively improve evacuation efficiency. However, different emergency situations also have different effects on evacuation behavior. In this paper, we combine spatial knowledge integrity, intervention behavior and emergency situations in a fire evacuation study. To complete this study, 128 participants were recruited using VR technology, classified into spatial knowledge completeness, and studied crowd evacuation through different intervention behaviors in different simulated emergency scenarios. The results of the study showed that participants with complete spatial knowledge had shorter evacuation distances and times. Secondly, leader interventions guided evacuation better for participants with incomplete spatial knowledge in low-hazard emergencies, while range interventions were better for participants with complete spatial knowledge. Thirdly, in high-risk emergencies, leader intervention was better than range intervention for evacuation, regardless of spatial knowledge completeness. Fourth, the interaction between spatial knowledge completeness and intervention behavior was significant, positively influencing the evacuation time and distance of participants.


Author(s):  
Chen ◽  
Yu ◽  
Wen ◽  
Zhang ◽  
Yin ◽  
...  

The timely and secure evacuation of an urban residential community is crucial to residents’ safety when emergency events happen. This is different to evacuation of office spaces or schools, emergency evacuation in residential communities must consider the pre-evacuation time. The importance of estimating evacuation time components has been recognized for approximately 40 years. However, pre-evacuation time is rarely discussed in previous community-scale emergency evacuation studies. This paper proposes a new method that estimates the pre-evacuation time, which makes the evacuation simulation in urban residential communities more realistic. This method integrates the residents’ pre-evacuation behavior data obtained by surveys to explore the influencing factors of pre-evacuation time and builds a predictive model to forecast pre-evacuation times based on the Random Forest algorithm. A sensitivity analysis is also conducted to find the critical parameters in evacuation simulations. The results of evacuation simulations in different scenarios can be compared to identify potential evacuation problems. A case study in Luoshanqicun Community, Pudong New District, Shanghai, China, was conducted to demonstrate the feasibility of the proposed method. The simulation results showed that the pre-evacuation times have significant impacts on the simulation procedure, including the total evacuation time, the congestion time and the congestion degree. This study can help to gain a deeper understanding of residents’ behaviors under emergencies and improve emergency managements of urban communities.


Safety ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 47
Author(s):  
Wattana Chanthakhot ◽  
Kasin Ransikarbum

Emergency events in the industrial sector have been increasingly reported during the past decade. However, studies that focus on emergency evacuation to improve industrial safety are still scarce. Existing evacuation-related studies also lack a perspective of fire assembly point’s analysis. In this research, location of assembly points is analyzed using the multi-criteria decision analysis (MCDA) technique based on the integrated information entropy weight (IEW) and techniques for order preference by similarity to ideal solution (TOPSIS) to support the fire evacuation plan. Next, we propose a novel simulation model that integrates fire dynamics simulation coupled with agent-based evacuation simulation to evaluate the impact of smoke and visibility from fire on evacuee behavior. Factors related to agent and building characteristics are examined for fire perception of evacuees, evacuees with physical disabilities, escape door width, fire location, and occupancy density. Then, the proposed model is applied to a case study of a home appliance factory in Chachoengsao, Thailand. Finally, results for the total evacuation time and the number of remaining occupants are statistically examined to suggest proper evacuation planning.


Author(s):  
Takao Kakizaki ◽  
Jiro Urii ◽  
Mitsuru Endo

The 3D mass evacuation simulation of an airplane accident is experimentally verified. Evacuee motion has been experimentally investigated by building a test field that emulates the interior of an actual regional airliner with a capacity of approximately 100 passengers. The experiment results indicate that the evacuation time tends to be affected by the number of passengers and the evacuee guidance at the emergency exit. The results also indicate that any evacuation delay in exiting by individual passengers only slightly affects the total evacuation time because of evacuee congestion in the aisles. Moreover, the importance of evacuation guidance notification was investigated based on the evacuation-order variance. Finally, the experimental results were compared to the corresponding simulation results. Simulations using appropriate evacuee walking speeds can provide valid evacuation times, which are the most important factor in designing evacuation drills. Consequently, these results should be applied to existing 3D simulations using precise KDH models for more accurate mass evacuation/rescue simulations.


Author(s):  
Zhongrui Ni ◽  
Zhen Liu ◽  
Tingting Liu ◽  
Yanjie Chai ◽  
Cuijuan Liu

The simulation of a crowd evacuating public buildings can be an important reference in planning the layout of buildings and formulating evacuation strategies. This paper proposes an agent-based crowd model; a crowd evacuation navigation simulation model is proposed for the multi-obstacle environment. We introduce the concept of navigation factor to describe the proximity of the navigation point to the exit. An algorithm for creating navigation points in multi-obstacle environment is proposed along with the global navigation and local navigation control algorithms of the crowd. We construct a crowd evacuation simulation prototype system with different simulation scenes using the scene editor. We conduct the crowd evacuation simulation experiment in the multi-obstacle scene, recording and analyzing the relevant experimental data. The simulation prototype system can be used to derive the evacuation time of the crowd and analyze the evacuation behavior of the crowd. It is expected to provide a visual deduction method for crowd management in an evacuation emergency.


Sign in / Sign up

Export Citation Format

Share Document