scholarly journals Polynomial matrix synthesis method of a subordinate control system

2021 ◽  
Vol 2131 (3) ◽  
pp. 032022
Author(s):  
A Voevoda ◽  
V Filiushov

Abstract The main difference between controlsyn thesis approaches is the various mathematical representation of a plant or system model. The aim of the work is to represent a single channel control plant model by a multichannel one and to obtain an identical design result for a single channel multiloop synthesis method by a multichannel one. For these purposes, direct current motor model is used as an example of a single channel plant. Classical approach to design control system for that kind of plant is to describe it as a serial connected transfer functions and design a multiloop system in accordance with subordinate concept. Polynomial matrix synthesis method with Sylvester matrix is utilized to make identical subordinate regulator. By several transformations, polynomial matrix description was obtained, that describe the plant as one input and three output model and subordinate regulator as a three input and one output model. Arbitrary parameters of regulator were introduced for extended null placement.

Author(s):  
Patterson B. Sisson ◽  
David K. Faymon

In keeping with the general industry trend of applying Full Authority Digital Electronic Control (FADEC) technology to small gas turbine engines, Textron Lycoming and Chandler Evans Division of Coltec Industries have developed and qualified a single channel control system for use on the Textron Lycoming LF507-1F turbofan engine. The LF507-1F is the world’s smallest FADEC-equipped airline turbofan engine and is the only FADEC-equipped turbofan developed and certified for the regional jetliner market. The application for this powerplant, the four-engine AVRO International Aerospace RJ Avroliner series of aircraft, began airline service in April of 1993. The FADEC employs modern control algorithms to achieve surge-free operation over the flight envelope while providing rapid transient performance and crisp handling qualities. The control interfaces with the aircraft via an ARINC 429 data link to control each engine automatically to the desired power setting with or without N1 synchronization. A simple hydromechanical backup control provides full dispatch capability in the event of a critical FADEC system failure. In addition, the FADEC includes advanced diagnostics for fault identification to the line replaceable unit (LRU) level without specialized test equipment. This paper describes the architecture, primary features, and development process of the engine control system. Emphasis is placed on the design characteristics and technical challenges unique to the development of an inexpensive control system for the low thrust turbofan market.


2020 ◽  
Vol 68 (5) ◽  
pp. 358-366
Author(s):  
H.E. Oh ◽  
W.B. Jeong ◽  
C. Hong

When multiple sources contribute competitively to the noise level, multi-channel control architecture is needed, leading to more cost and time for control computation. We, hence, are concerned with a single-channel control method with a single-reference signal obtained from a linear combination of the multiple source signals. First, we selected 3 source signal sensors for the reference signals and the error sensor, selected a proper actuator and designed the controllers: 3 cases of single-channel feedforward controllers with a single-reference signal respectively from the source signals, a multi-channel feedforward controller with the reference signals from the source signals, and the proposed controller with the reference signal from weighted sum of the source signals. The weighting factors and the filter coefficients of the controller were determined by the FxLMS algorithm. An experiment was then performed to confirm the effectiveness of the proposed method comparing the control performance with other methods for a tower air conditioner. The overall sound pressure level (SPL) detected by the error sensor is compared to evaluate their performance. The reduction in the overall SPL was obtained by 4.74 dB, 1.96 dB and 6.62 dB, respectively, when using each of the 3 reference signals. Also, the overall SPL was reduced by 7.12 dB when using the multi-reference controller and by 7.66 dB when using the proposed controller. Conclusively, under the multiple source contribution, a single-channel feed forward controller with the reference signal from a weighted sum of the source signals works well with lower cost than multi-channel feedforward controller.


Author(s):  
Yoshisada Murotsu ◽  
Hiroshi Okubo ◽  
Kei Senda

Abstract The idea of a tendon vibration control system for a beam-like flexible space structure has been proposed. To verify the feasibility of the concept, an experimental tendon control system has been constructed for the vibration control of a flexible beam simulating Large Space Structures (LSS). This paper discusses modeling, identification, actuator disposition, and controller design for the experimental system. First, a mathematical model of the whole system of the beam and tendon actuator is developed through a finite element method (FEM). Second, to obtain an accurate mathematical model for designing a controller, unknown characteristic parameters are estimated by using an output error method. The validity of the proposed identification scheme is demonstrated by good agreement between the transfer functions of the experimental system and an identified model. Then, disposition of actuators is discussed by using the modal cost analysis. Finally, controllers are designed for SISO and MIMO systems. The feasibility of the proposed controller is verified through numerical simulation and hardware experiments.


2021 ◽  
Vol 31 (1) ◽  
pp. 8-20
Author(s):  
Saken K. Sheryazov ◽  
Svetlana A. Popova

Introduction. The article deals with the conditions for growing greenhouse plants. Supplementary lighting supports the process of plant photosynthesis and the microclimate in the greenhouse. The authors suggest the ways to reduce energy consumption in greenhouses by controlling the microclimate and process of supplementary lighting in greenhouses. Materials and Methods. Special lighting and temperature are required for growing greenhouse plants. A method of efficient plant growing is light and temperature control. The development of a control algorithm requires the mathematical models that relate the process of photosynthesis to the microclimate parameters. There are given the mathematical models based on the experimental data. Results. The control system and algorithm to control plant-growing conditions have been developed to maintain the greenhouse microclimate. LED lamps are used to control the lighting process. The authors present the developed block diagram of the control system, which contains four channels responsible for the main energy-intensive microclimate factors. The description of the algorithm of the greenhouse light-temperature control is given. Discussion and Conclusion. In conclusion, the need to maintain the greenhouse microclimate and supplementary lighting with the different radiation spectrum for the efficient cultivation of greenhouse plants is shown. The developed structure and control algorithm for the supplementary plant lighting process and greenhouse illumination through using LED lamps help reduce energy consumption.


Sign in / Sign up

Export Citation Format

Share Document