scholarly journals Thermal imaging of hot spots in nanostructured microstripes

2010 ◽  
Vol 214 ◽  
pp. 012098
Author(s):  
E Saïdi ◽  
J Lesueur ◽  
L Aigouy ◽  
J Labéguerie-Egéa ◽  
M Mortier
Keyword(s):  
2014 ◽  
Vol 85 (2) ◽  
pp. 023705 ◽  
Author(s):  
Ming-Wei Chen ◽  
Sizhu You ◽  
Kenneth S. Suslick ◽  
Dana D. Dlott

2013 ◽  
Vol 770 ◽  
pp. 157-160
Author(s):  
Buntoon Wiengmoon

The aim of this study was to investigate the localized solar cells heating by thermal imaging, scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The electrical measurements and thermal infrared measurements were done on the commercial crystalline Si cells (10 cm x 10 cm). SEM was used for the observation of the localized heating. The I-V characteristics of all cells were quite similar with a small spread in the electrical parameters, while the IR images were different: some cells had quite uniform temperature profiles distribution and other ones showed the localized heating. The energy dispersive spectroscopy (EDS) analysis showed that some hot spots have high metal impurity contamination. The micro-structure investigation of hot spots revealed the micro-cracks presence. Our study found direct correlation between areas of high impurity contamination, micro cracks and hot-spot heating.


2020 ◽  
Vol 34 (03) ◽  
pp. 161-164
Author(s):  
Geoffrey G. Hallock

AbstractThe use of thermography for the identification of cutaneous “hot spots” that coincide with perforators is not a new concept, but the required professional cameras may be prohibitively expensive. Only relatively recently, incredibly cheap but adequate thermal imaging cameras have become available that work in concert with the ubiquitous cell phone. This can now serve as a rapid, accurate, and complementary method for finding a perforator sufficient to serve as the hub for a perforator pedicled propeller flap. In addition, the preferred direction of rotation about that hub, effect of flap insetting on perfusion, and then postoperative monitoring are possible by proper interpretation of corresponding thermograms. Every reconstructive surgeon should be able to obtain this device, and then easily learn what potential attributes for them are available when planning a propeller flap.


2013 ◽  
Vol 2013 (1) ◽  
pp. 000964-000969
Author(s):  
Bennion Cannon ◽  
Frank Friedl ◽  
Gary Gisler

This paper details the thermal evaluation of high-current polyimide rigid and rigid-flex printed wiring boards in a vacuum. Although industry standards, such as IPC-2152 or MIL-STD-275, can be used to determine required trace width for PWB traces that carry current to between 20 or 30 amps for multiple copper plane thicknesses, they typically cannot be used to determine trace width for PWB traces that handle current greater than 15 amps. This paper presents results from testing and analysis of high-current rigid and rigid-flex PWBS that must carry current of up to 60 amps. Testing was performed in vacuum on a controlled-temperature platen, measuring board temperature at specific locations to determine performance of different trace widths using 2 and 4 ounce copper layers. A thermal imaging camera was used to identify PWB hot spots. Test results were compared to IPC-2152 standards, extrapolated to 60 amps current.


Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5461
Author(s):  
Dávid Matusz-Kalász ◽  
István Bodnár

Solar panels have been widely criticized for their weather dependence and slowly improving efficiency. Several external factors can further increase the efficiency of solar panels, e.g., shading effect and surface contamination. We investigated the warming effect and the negative impact of these factors on energy production during the research. The continuous operation at high temperatures can modify the crystal structure of solar cells in these hot spots. The electroluminescence (EL) images and thermal imaging measurements show crystal structure failure. In addition to structural damage and rapid aging of the solar cells, contaminants can cause power losses of up to 10%.


Author(s):  
G.K.W. Balkau ◽  
E. Bez ◽  
J.L. Farrant

The earliest account of the contamination of electron microscope specimens by the deposition of carbonaceous material during electron irradiation was published in 1947 by Watson who was then working in Canada. It was soon established that this carbonaceous material is formed from organic vapours, and it is now recognized that the principal source is the oil-sealed rotary pumps which provide the backing vacuum. It has been shown that the organic vapours consist of low molecular weight fragments of oil molecules which have been degraded at hot spots produced by friction between the vanes and the surfaces on which they slide. As satisfactory oil-free pumps are unavailable, it is standard electron microscope practice to reduce the partial pressure of organic vapours in the microscope in the vicinity of the specimen by using liquid-nitrogen cooled anti-contamination devices. Traps of this type are sufficient to reduce the contamination rate to about 0.1 Å per min, which is tolerable for many investigations.


Sign in / Sign up

Export Citation Format

Share Document