scholarly journals Numerical investigation of a high head Francis turbine under steady operating conditions using foam-extend

2015 ◽  
Vol 579 ◽  
pp. 012008 ◽  
Author(s):  
M Lenarcic ◽  
M Eichhorn ◽  
S J Schoder ◽  
Ch Bauer
2010 ◽  
Vol 27 (3) ◽  
pp. 365-386 ◽  
Author(s):  
Xiao Yexiang ◽  
Wang Zhengwei ◽  
Yan Zongguo ◽  
Li Mingan ◽  
Xiao Ming ◽  
...  

Author(s):  
Markus Eichhorn ◽  
Eduard Doujak

Fatigue analysis becomes more important in the design phase of Francis turbine runners due to the changing requirements on hydropower plants, affected by the increasing amount of volatile energy sources. Francis turbines are operated more often and over longer periods of time at off-design conditions to provide regulating power to the electric grid. The lifetime of a Francis runner depends mainly on the dynamic excitation induced by unsteady pressure pulsations like the rotor-stator interaction or draft tube vortex ropes. An approach using one-way coupled fluid-structure interactions has been developed and is now extended using unsteady CFD simulations as well as harmonic and transient FEM computations. The results are compared to strain gauge measurements on the according high head Francis turbine to validate the overall procedure. The investigations should be further used to perform a fatigue analysis and to examine the applicability for lifetime investigations on Francis machines with different specific speeds.


2013 ◽  
Vol 135 (11) ◽  
Author(s):  
Chirag Trivedi ◽  
Michel J. Cervantes ◽  
B. K. Gandhi ◽  
Ole G. Dahlhaug

Experimental and numerical studies on a high head model Francis turbine were carried out over the entire range of turbine operation. A complete Hill diagram was constructed and pressure-time measurements were performed at several operating conditions over the entire range of power generation by installing pressure sensors in the rotating and stationary domains of the turbine. Unsteady numerical simulations were performed at five operating conditions using two turbulent models, shear stress transport (SST) k-ω and standard k-ε and two advection schemes, high resolution and second order upwind. There was a very small difference (0.85%) between the experimental and numerical hydraulic efficiencies at the best efficiency point (BEP); the maximum difference (14%) between the experimental and numerical efficiencies was found at lower discharge turbine operation. Investigation of both the numerical and experimental pressure-time signals showed that the complex interaction between the rotor and stator caused an output torque oscillation over a particular power generation range. The pressure oscillations that developed due to guide vanes and runner blades interaction propagate up to the trailing edge of the blades. Fourier analysis of the signals revealed the presence of a vortex rope in the draft tube during turbine operation away from the BEP.


2013 ◽  
Vol 662 ◽  
pp. 637-642
Author(s):  
Hong Ming Zhang ◽  
Li Xiang Zhang

The paper presents numerical investigation of cavitating turbulent flow in a high head Francis turbine runner fitted with splitter blades at part load operation. Analysis was performed by OpenFOAM code. A mixture assumption and a finite rate mass transfer model were introduced. The finite volume method is used to solve the governing equations of the mixture model and the pressure-velocity coupling is handled via a Pressure Implicit with Splitting of Operators (PISO) procedure. Simulation results show that the volume fraction of water vapor and the pressure uneven distribution on the main blade and splitter blade. It will lead to cavitation and fatigue damage.


Energies ◽  
2016 ◽  
Vol 9 (3) ◽  
pp. 149 ◽  
Author(s):  
Chirag Trivedi ◽  
Michel Cervantes ◽  
B. Gandhi

Author(s):  
J. Sans ◽  
M. Resmini ◽  
J.-F. Brouckaert ◽  
S. Hiernaux

Solidity in compressors is defined as the ratio of the aerodynamic chord over the peripheral distance between two adjacent blades, the pitch. This parameter is simply the inverse of the pitch-to-chord ratio generally used in turbines. Solidity must be selected at the earliest design phase, i.e. at the level of the meridional design and represents a crucial step in the whole design process. Most of the existing studies on this topic rely on low-speed compressor cascade correlations from Carter or Lieblein. The aim of this work is to update those correlations for state-of-the-art controlled diffusion blades, and extend their application to high Mach number flow regimes more typical of modern compressors. Another objective is also to improve the physical understanding of the solidity effect on compressor performance and stability. A numerical investigation has been performed using the commercial software FINE/Turbo. Two different blade profiles were selected and investigated in the compressible flow regime as an extension to the low-speed data on which the correlations are based. The first cascade uses a standard double circular arc profile, extensively referenced in the literature, while the second configuration uses a state-of-the-art CDB, representative of low pressure compressor stator mid-span profile. Both profiles have been designed with the same inlet and outlet metal angles and the same maximum thickness but the camber and thickness distributions, the stagger angle and the leading edge geometry of the CDB have been optimized. The determination of minimum loss, optimum incidence and deviation is addressed and compared with existing correlations for both configurations and various Mach numbers that have been selected in order to match typical booster stall and choke operating conditions. The emphasis is set on the minimum loss performance at mid-span. The impact of the solidity on the operating range and the stability of the cascade are also studied.


2014 ◽  
Vol 709 ◽  
pp. 41-45
Author(s):  
Kan Kan ◽  
Yuan Zheng ◽  
Xin Zhang ◽  
Bin Sun ◽  
Hui Wen Liu

This paper does unidirectional fluid-solid coupling calculation on the runner strength under three designed head loading conditions of a certain Francis turbine in the north-eastern China. The water pressure on the blade in the flow fields of different operating conditions is calculated by means of CFD software CFX. With the help of ansys workbench, the water pressure is loaded to the blade as structural load to conclude the static stress distribution and deformation of the runner under different operating conditions. The results show that the maximum static stress increases with the rise of the flow and appears near the influent side of the blade connected to the runner crown; the maximum deformation increases with the rise of the flow and appears on the band. The results provides effective basis for the structural design and safe operation of the Francis turbine.


2018 ◽  
Vol 141 (4) ◽  
Author(s):  
Angelo Pasini ◽  
Ruzbeh Hadavandi ◽  
Dario Valentini ◽  
Giovanni Pace ◽  
Luca d'Agostino

A high-head three-bladed inducer has been equipped with pressure taps on the hub along the blade channels with the aim of more closely investigating the dynamics of cavitation-induced instabilities developing in the impeller flow. Spectral analysis of the pressure signals obtained from two sets of transducers mounted both in the stationary and rotating frames has allowed to characterize the nature, intensity, and interactions of the main flow instabilities detected in the experiments: subsynchronous rotating cavitation (RC), cavitation surge (CS), and a high-order axial surge oscillation. A dynamic model of the unsteady flow in the blade channels has been developed based on experimental data and on suitable descriptions of the mean flow and the oscillations of the cavitating volume. The model has been used for estimating at the inducer operating conditions of interest the intensity of the flow oscillations associated with the occurrence of the CS mode generated by RC in the inducer inlet.


Sign in / Sign up

Export Citation Format

Share Document