scholarly journals Generation of XS library for the reflector of VVER reactor core using Monte Carlo code Serpent

2017 ◽  
Vol 781 ◽  
pp. 012029 ◽  
Author(s):  
K I Usheva ◽  
S A Kuten ◽  
A A Khruschinsky ◽  
L F Babichev
2020 ◽  
Vol 225 ◽  
pp. 03007
Author(s):  
Tanja Goričanec ◽  
Domen Kotnik ◽  
Žiga Štancar ◽  
Luka Snoj ◽  
Marjan Kromar

An approach for calculating ex-core detector response using Monte Carlo code MCNP was developed. As a first step towards ex-core detector response prediction a detailed MCNP model of the reactor core was made. A script called McCord was developed as a link between deterministic program package CORD-2 and Monte Carlo code MCNP. It automatically generates an MCNP input from the CORD-2 data. A detailed MCNP core model was used to calculate 3D power distributions inside the core. Calculated power distributions were verified by comparison to the CORD-2 calculations, which is currently used for core design calculation verification of the Krško nuclea power plant. For the hot zero power configuration, the deviations are within 3 % for majority of fuel assemblies and slightly higher for fuel assemblies located at the core periphery. The computational model was further verified by comparing the calculated control rod worth to the CORD-2 results. The deviations were within 50 pcm and considered acceptable. The research will in future be supplemented with the in-core and ex-core detector signal calculations and neutron transport outside the reactor core.


Author(s):  
Zheng Zheng ◽  
Hui Li ◽  
Mengqi Wang

Neutrons and photons produced from reactor core during operation pass through the pressure vessel, reach the reactor cavity, and form the reactor cavity streaming. Reactor cavity streaming dose rates calculation during normal operation is important for the evaluation and control of the equipment dose rates in the nuclear power plant. Because reactor is great in dimension and complex in geometry, neutrons and photons fluence rates declined by several orders from reactor core to outside. Cavity streaming calculation is a deep penetration calculation with heavy computation load which is difficult to converge. Three dimensional Discrete Ordinates and Monte Carlo (SN-MC) coupling method combines the advantage of the SN method with high efficiency and the MC method with fine geometrical modeling. The SN-MC coupling method decreases the tally errors and increases the efficiency of the MC method effectively by using MC surface source generated by the SN fluence rates. In this paper, the theoretical model of the 3D SN-MC coupling method is presented. In order to fulfill the coupling calculation, a 3D Discrete Ordinates code is modified to output angular fluence rates, a link code DO2MC is developed to calculate cummulative distribution functions of source particle variables on surface source, and a source subroutine is written for a 3D Monte Carlo code. The 3D SN-MC coupling method is applied on the calculation of the CAP1400 cavity streaming neutron and photon dose rates. Numerical results show that the 3D SN-MC coupling codes are correct, the relative errors of the results are less than 20% compared with those of the MC bootstrapping method, and the efficiency is greatly enhanced.


2021 ◽  
Vol 247 ◽  
pp. 04024
Author(s):  
Yurii Bilodid ◽  
Jaakko Leppänen

One of challenges of the Monte Carlo full core simulations is to obtain acceptable statistical variance of local parameters throughout the whole reactor core at a reasonable computation cost. The statistical variance tends to be larger in low-power regions. To tackle this problem, the Uniform-Fission-Site method was implemented in Monte Carlo code MC21 and its effectiveness was demonstrated on NEA Monte Carlo performance benchmark. The very similar method is also implemented in Monte Carlo code Serpent under the name Uniform Fission Source (UFS) method. In this work the effect of UFS method implemented in Serpent is studied on the BEAVRS benchmark which is based on a real PWR core with relatively flat radial power distribution and also on 3x3 PWR mini-core simulated with thermo-hydraulic and thermo-mechanic feedbacks. It is shown that the application of the Uniform Fission Source method has no significant effect on radial power variance but equalizes axial distribution of variance of local power.


2009 ◽  
Vol 36 (11-12) ◽  
pp. 1689-1693 ◽  
Author(s):  
N. Catsaros ◽  
B. Gaveau ◽  
M. Jaekel ◽  
J. Maillard ◽  
G. Maurel ◽  
...  

Author(s):  
Muhammad Imron ◽  
Donny Hartanto

Abstract This paper presents static and transient solutions for the PWR MOX/UO2 transient benchmark by Serpent 2 Monte Carlo code and open nodal core simulator called ADPRES. The presences of MOX fuels and burn-up variation in the benchmark’s reactor core pose challenges for reactor simulators due to severe flux gradient across fuel assemblies. In this work, the two-step method was used, in which the assembly level two-group constants were generated from single assembly calculations with zero net current boundary conditions using Serpent 2 Monte Carlo code, and later the core calculation was performed using ADPRES open nodal core simulator. Two types of diffusion coefficients were generated: the conventional B1 leakage corrected and Cumulative Migration Method (CMM). Finally, the solutions of Serpent 2/ADPRESS, including multiplication factor, power distribution, control rod worth, and critical boron concentration using both diffusion coefficients were compared against solutions from heterogeneous Serpent 2 calculations where the fuel and cladding are explicitly modeled. The reactor power during transients were also compared qualitatively against other nodal core simulators. The results showed that Serpent 2/ADPRES were able to predict the heterogeneous Monte Carlo solutions very well with reasonable differences. The transient solutions were also quite accurate compared to other nodal core simulators. As for the diffusion coefficients comparison, it was found that the CMM diffusion coefficient provide more accurate solutions for the benchmark compared to the B1 leakage corrected diffusion coefficients.


Author(s):  
Yuxuan Liu ◽  
Ganglin Yu ◽  
Kan Wang

Monte Carlo codes are powerful and accurate tools for reactor core calculation. Most Monte Carlo codes use the point-wise data format, in which the data are given as tables of energy-cross section pairs. When calculating the cross sections at an incident energy value, it should be determined which grid interval the energy falls in. This procedure is repeated so frequently in Monte Carlo codes that its contribution in the overall calculation time can become quite significant. In this paper, the time distribution of Monte Carlo method is analyzed to illustrate the time consuming of cross section calculation. By investigation on searching and calculating cross section data in Monte Carlo code, a new search algorithm called hash table is elaborately designed to substitute the traditional binary search method in locating the energy grid interval. The results indicate that in the criticality calculation, hash table can save 5%∼17% CPU time, depending on the number of nuclides in the material, as well as complexity of geometry for particles tracking.


Author(s):  
Wankui Yang ◽  
Baoxin Yuan ◽  
Songbao Zhang ◽  
Haibing Guo ◽  
Yaoguang Liu ◽  
...  

Deep penetration problems exist widely in reactor applications, such as SPRR300 (Swimming Pool Research Reactor 300), a light water moderated, enriched uranium fueled research reactor in China. Deterministic transport theory is intrinsically suitable for deep penetration. But there exist some problems when it’s applied in SPRR-300research reactors. First, the reactor core is complicated for geometry description in deterministic theory codes. Monte Carlo method has advantages in complex geometry modeling. And it uses continuous energy cross sections which are independent with specific reactor types and research objections. But usually it’s difficult to converge well enough to deal with deep penetration problems, even though there are a number of variance reduction techniques. Based on the advantages and disadvantages of Monte Carlo and Deterministic method, we proposed a coupled neutron transport calculation method for deep penetration. It combines advantages of these two methods. Firstly, we use Monte Carlo code to finish fine modeling and do the whole reactor core calculation. Domestically developed Monte Carlo code JMCT is used to do the neutron transport calculation. Then homogenized group constants in each mesh are calculated from JMCT output by a self-developed script. Afterwards, we do the whole reactor calculation with deterministic theory code TORT. It directly uses group constants generated by Monte Carlo code. Finally, we can get the deep penetration calculation results from TORT output. Verification is carried out by comparing the group constants of benchmark problem, and by comparing keff calculated by this method with continuous energy Monte Carlo method. Benchmark calculation is conducted with OECD/NEA slab benchmark problem. The comparison shows that group constants generated by this study are in good agreement with results from published references. Then above group constants are applied to 3-dimensional discrete ordinates deterministic theory transport code TORT. But keff calculated by TORT is a little lower than that calculated by Monte Carlo code JMCT. To minimize other influence factors, different Sn/Pn order, and different mesh size in TORT has been tried. Unfortunately the keff difference between these two methods remains. Even though the keff results in this benchmark are less than keff calculated by continuous energy MC method, Benchmark results show that all the group constants generated by this method are in good agreement with existing references. So it can be expected that after further verification and validation, this coupled method can be effectively applied to the deep penetration problem in such kind of research reactors.


Sign in / Sign up

Export Citation Format

Share Document