scholarly journals Development of a detector in order to investigate (n,γ)-cross sections by ToF method with a very short flight path

2018 ◽  
Vol 940 ◽  
pp. 012060 ◽  
Author(s):  
C Wolf ◽  
J Glorius ◽  
R Reifarth ◽  
M Weigand
2021 ◽  
Vol 247 ◽  
pp. 09007
Author(s):  
Isabelle Duhamel ◽  
Nicolas Leclaire ◽  
Luiz Leal ◽  
Atsushi Kimura ◽  
Shoji Nakamura

Available nuclear data for molybdenum included in the nuclear data libraries are not of sufficient quality for reactor physics or criticality safety issues and indeed information about uncertainties and covariance is either missing or leaves much to be desired. Therefore, IRSN and JAEA performed experimental measurements on molybdenum at the J-PARC (Japan Proton Accelerator Research Complex) facility in Japan. The aim was to measure capture cross section and transmission of natural molybdenum at the ANNRI (Accurate Neutron-Nucleus Reaction measurement Instrument) in the MLF (Material Life and science Facility) of J-PARC. The measurements were performed on metallic natural molybdenum samples with various thicknesses. A NaI detector, placed at a flight-path length of about 28 m, was used for capture measurements and a Li-glass detector (flight-path length of about 28.7 m) for transmission measurements. Following the data reduction process, the measured data are being analyzed and evaluated to produce more accurate cross sections and associated uncertainties.


2010 ◽  
Author(s):  
Stephan Walter ◽  
Michael Heil ◽  
Franz Käppeler ◽  
Ralf Plag ◽  
Rene Reifarth

1995 ◽  
Vol 32 (9) ◽  
pp. 827-833 ◽  
Author(s):  
Tatsushi NAKAMOTO ◽  
Kenji ISHIBASHI ◽  
Naruhiro MATSUFUJI ◽  
Nobuhiro SHIGYO ◽  
Keisuke MAEHATA ◽  
...  

1970 ◽  
Vol 48 (14) ◽  
pp. 1635-1648 ◽  
Author(s):  
J. W. Jury ◽  
J. S. Hewitt ◽  
K. G. McNeill

Photoneutron spectra for transitions to the ground state in the giant resonance of 16O were measured with high neutron energy resolution (ΔE ~ 60 keV) at angles of 50, 66, 82, 98, 114, 130, and 146 degrees relative to the direction of the incident bremsstrahlung beam. The spectra at the various angles were measured during successive experimental runs using a single 50 m time-of-flight spectrometer. The different angles were obtained by bending the electron beam relative to the direction of the flight path. Angular normalization was achieved by using a fast neutron monitor located at the end of a short flight path which was always normal to the reaction plane. Legendre coefficients for the angular distributions were extracted as functions of the excitation energy. From the energy dependence of the coefficients, interference effects are evident in the ground state (γ,n) cross section in the region from 17 to 30 MeV.


2020 ◽  
Author(s):  
Ilias Berberi ◽  
Paolo S. Segre ◽  
Douglas L. Altshuler ◽  
Roslyn Dakin

ABSTRACTUnpredictable movement can provide an advantage when animals avoid predators and other threats. Previous studies have examined how varying environments can elicit unpredictable movement, but the intrinsic causes of complex, unpredictable behavior are not yet known. We addressed this question by analyzing >200 hours of flight performed by hummingbirds, a group of aerial specialists noted for their extreme agility and escape performance. We used information theory to calculate unpredictability based on the positional entropy of short flight sequences during 30-min and 2-hour trials. We show that a bird’s entropy is repeatable, with stable differences among individuals that are negatively correlated with wing loading: birds with lower wing loading are less predictable. Unpredictability is also positively correlated with a bird’s overall acceleration and rotational performance, and yet we find that moment-to-moment changes in acceleration and rotational velocities do not directly influence entropy. This indicates that biomechanical performance must share an underlying basis with a bird’s ability to combine maneuvers into unpredictable sequences. Contrary to expectations, hummingbirds achieve their highest entropy at relatively slow speeds, pointing to a fundamental trade-off whereby individuals must choose to be either fast or unpredictable.


2019 ◽  
Vol 12 (10) ◽  
pp. 5443-5455 ◽  
Author(s):  
Tobias Borsdorff ◽  
Joost aan de Brugh ◽  
Andreas Schneider ◽  
Alba Lorente ◽  
Manfred Birk ◽  
...  

Abstract. On 13 October 2017, the Tropospheric Monitoring Instrument (TROPOMI) was launched on the Copernicus Sentinel-5 Precursor satellite in a sun-synchronous orbit. One of the mission's operational data products is the total column concentration of carbon monoxide (CO), which was released to the public in July 2018. The current TROPOMI CO processing uses the HITRAN 2008 spectroscopic data with updated water vapor spectroscopy and produces a CO data product compliant with the mission requirement of 10 % precision and 15 % accuracy for single soundings. Comparison with ground-based CO observations of the Total Carbon Column Observing Network (TCCON) show systematic differences of about 6.2 ppb and single-orbit observations are superimposed by a significant striping pattern along the flight path exceeding 5 ppb. In this study, we discuss possible improvements of the CO data product. We found that the molecular spectroscopic data used in the retrieval plays a key role for the data quality where the use of the Scientific Exploitation of Operational Missions – Improved Atmospheric Spectroscopy Databases (SEOM-IAS) and the HITRAN 2012 and 2016 releases reduce the bias between TROPOMI and TCCON due to improved CH4 spectroscopy. SEOM-IAS achieves the best spectral fit quality (root-mean-square, rms, differences between the simulated and measured spectrum) of 1.5×10-10 mol s−1 m−2 nm−1 sr−1 and reduces the bias between TROPOMI and TCCON to 3.4 ppb, while HITRAN 2012 and HITRAN 2016 decrease the bias even further below 1 ppb. HITRAN 2012 shows the worst fit quality (rms = 2.5×10-10 mol s−1 m−2 nm−1 sr−1) of the tested cross sections and furthermore introduces an artificial bias of about -1.5×1017 molec cm−2 between TROPOMI CO and the CAMS-IFS model in the Tropics caused by the H2O spectroscopic data. Moreover, analyzing 1 year of TROPOMI CO observations, we identified increased striping patterns by about 16 % percent from November 2017 to November 2018. For that, we defined a measure γ, quantifying the relative pixel-to-pixel variation in CO in the cross-track and along-track directions. To mitigate this effect, we discuss two destriping methods applied to the CO data a posteriori. A destriping mask calculated per orbit by median filtering of the data in the cross-track direction significantly reduced the stripe pattern from γ=2.1 to γ=1.6. However, the destriping can be further improved, achieving γ=1.2 by deploying a Fourier analysis and filtering of the data, which not only corrects for stripe patterns in the cross-track direction but also accounts for the variability of stripes along the flight path.


Author(s):  
S. Golladay

The theory of multiple scattering has been worked out by Groves and comparisons have been made between predicted and observed signals for thick specimens observed in a STEM under conditions where phase contrast effects are unimportant. Independent measurements of the collection efficiencies of the two STEM detectors, calculations of the ratio σe/σi = R, where σe, σi are the total cross sections for elastic and inelastic scattering respectively, and a model of the unknown mass distribution are needed for these comparisons. In this paper an extension of this work will be described which allows the determination of the required efficiencies, R, and the unknown mass distribution from the data without additional measurements or models. Essential to the analysis is the fact that in a STEM two or more signal measurements can be made simultaneously at each image point.


Author(s):  
R. W. Anderson ◽  
D. L. Senecal

A problem was presented to observe the packing densities of deposits of sub-micron corrosion product particles. The deposits were 5-100 mils thick and had formed on the inside surfaces of 3/8 inch diameter Zircaloy-2 heat exchanger tubes. The particles were iron oxides deposited from flowing water and consequently were only weakly bonded. Particular care was required during handling to preserve the original formations of the deposits. The specimen preparation method described below allowed direct observation of cross sections of the deposit layers by transmission electron microscopy.The specimens were short sections of the tubes (about 3 inches long) that were carefully cut from the systems. The insides of the tube sections were first coated with a thin layer of a fluid epoxy resin by dipping. This coating served to impregnate the deposit layer as well as to protect the layer if subsequent handling were required.


Author(s):  
Mihir Parikh

It is well known that the resolution of bio-molecules in a high resolution electron microscope depends not just on the physical resolving power of the instrument, but also on the stability of these molecules under the electron beam. Experimentally, the damage to the bio-molecules is commo ly monitored by the decrease in the intensity of the diffraction pattern, or more quantitatively by the decrease in the peaks of an energy loss spectrum. In the latter case the exposure, EC, to decrease the peak intensity from IO to I’O can be related to the molecular dissociation cross-section, σD, by EC = ℓn(IO /I’O) /ℓD. Qu ntitative data on damage cross-sections are just being reported, However, the microscopist needs to know the explicit dependence of damage on: (1) the molecular properties, (2) the density and characteristics of the molecular film and that of the support film, if any, (3) the temperature of the molecular film and (4) certain characteristics of the electron microscope used


Sign in / Sign up

Export Citation Format

Share Document