scholarly journals Measurements of sub-nT dynamic magnetic field shielding with soft iron and mu-metal for use in linear colliders

2020 ◽  
Vol 15 (12) ◽  
pp. P12030-P12030
Author(s):  
C. Gohil ◽  
P.N. Burrows ◽  
N. Blaskovic Kraljevic ◽  
D. Schulte ◽  
B. Heilig
Author(s):  
Jia Ji Lee ◽  
Chang Hong Pua ◽  
Misni Misran ◽  
Poh Foong Lee

Objectives: Magnetic drug targeting offers the latest popular alternative option to deliver magnetic drug carriers into targeting region body parts through manipulation of an external magnetic field. However, the effectiveness of using an electromagnetic field to manipulate and directing magnetic particles is yet to be established. Methods: In this paper, a homemade cost-effective electromagnet system was built for the purpose of studying the control and directing the magnetic drug carriers. The electromagnet system was built with four electromagnetic sources and tested the capability in directing the particles’ movement in different geometry patterns. Besides that, the creation of the self-rotation of individual magnetic particle clusters was achieved by using fast switching between magnetic fields. This self-rotation allows the possibility of cell apoptosis study to carry out. The system was constructed with four electromagnets integrated with a feedback control system and built to manipulate a droplet of commercially available iron (II, III) oxide nanoparticles to steer the magnetic droplet along different arbitrary trajectories (square, circle, triangle, slanted line) in 2-dimensional. Results: A dynamic magnetic field of 25 Hz was induced for magnetic nanoparticles rotational effect to observe the cell apoptosis. A profound outcome shows that the declining cell viability of the cell lines by 40% and the morphology of shrinking cells after the exposure of the dynamic magnetic field. Conclusion: The outcome from the pilot study gives an idea on the laboratory setup serves as a fundamental model for studying the electromagnetic field strength in applying mechanical force to target and to rotate for apoptosis on cancer cell line study.


This paper investigates the effect of applying a static and dynamic magnetic field in the process of depositing the Fe-Cu compound on the working electrode of a dye-sensitized solar cell (DSSC). Depositing this compound on glass is especially hard due to the unfavorable layer inconsistencies that accompany the utilization of the doctor blade technique and the dissociation of the compound at a temperature of 700˚C, which prevents its ability to be evaporated or sintered beyond that temperature. The Fe-Cu compound is appreciably cheaper, relatively simple to produce and is more absorptive (>81%) in the Vis-NIR than the standard TiO2 mesoporous material normally used for DSSCs. The high diffusion of the Fe into the Cu lattice allows the compound to behave as a semiconductor and is found to have a bandgap of 1.8V. The sensitizer used in the production of a test cell consisted of a Schiff base dye with a compatible bandgap of 1.68 eV and resulted in more generated photocurrent than its TiO2 counterpart, which is a promising result for an alternative mesoporous layer in solar cells.


2015 ◽  
Vol 3 (42) ◽  
pp. 11029-11035 ◽  
Author(s):  
Dustin M. Clifford ◽  
Carlos E. Castano ◽  
Amos J. Lu ◽  
Everett E. Carpenter

FeCo magnetically aligned linear chains (MALCs) were synthesized using polyol based co-precipitation chemistry under an external dynamic magnetic field and are potential candidates for magnetic switching devices and radar absorbing materials (RAMs).


2019 ◽  
Vol 9 (7) ◽  
pp. 1477 ◽  
Author(s):  
Jianjun Wu ◽  
Zhifeng Tang ◽  
Keji Yang ◽  
Fuzai Lv

Magnetostrictive patch transducers (MPT) with planar coils are ideal candidates for shear mode generation and detection in pipe and plate inspection with the advantages of flexibility, lightness and good directivity. However, the low energy conversion efficiency limits the application of the MPT in long distance inspection. In this article, a method for the enhancement of the MPT was proposed by dynamic magnetic field optimization using a soft magnetic patch (SMP). The SMP can reduce the magnetic resistance of the magnetic circuit, which increases the dynamic magnetic field intensity in the magnetostrictive patch during wave generation and restricts the induced dynamic magnetic field within the area around the coils for sensing during wave detection. Numerical simulations carried out at different frequencies verified the improvement of the dynamic magnetic fields by the SMP and influence of different affecting factors. The experimental validations of the signal enhancement in wave generation and detection were performed in an aluminum plate. The amplitude magnification could reach 12.7 dB when the MPTs were covered by the SMPs. Based on the numerical and experimental results, the SMP with a large relative permeability and thickness and close fitting between the SMP and coils were recommended when other application conditions were met.


2011 ◽  
Vol 340 ◽  
pp. 167-172 ◽  
Author(s):  
Wen Chang Lang

In this work, a dynamic arched magnetic field steered arc source was deigned by virtue of Finite Element Method (FEM) calculation. The magnetic field was produced by two main electromagnetic coils so that the magnetic field can be adjusted with the help of the two currentI1and I2,whereI1is the current to the internal coil mounted coaxially in a magnetic yoke generating a static arched magnetic field to confine the cathode spots and I2is the current to the external coil mounted coaxially outside the above yoke adjusting the position of the vertex of arch. Base on the results of simulation, it was found this design enable the sweeping of the arc spots on the target surface by means of adjusting the ratio of current (I1/I2) , and cause the arc distribute evenly on the cathode surface in the diffuse arc mode transferred from the constricted arc mode. The effects of the target thickness and current ratio on the configuration and intensity of dynamic arched magnetic field were investigated. The optimized operating modes was proposed and discussed.


Sign in / Sign up

Export Citation Format

Share Document