3D TSV hybrid pixel detector modules with ATLAS FE-I4 readout electronic chip

2022 ◽  
Vol 17 (01) ◽  
pp. C01029
Author(s):  
T. Fritzsch ◽  
F. Huegging ◽  
P. Mackowiak ◽  
K. Zoschke ◽  
M. Rothermund ◽  
...  

Abstract The through silicon via (TSV) technology has been introduced in a wide range of electronic packaging applications. Hybrid pixel detectors for X-ray imaging and for high-energy physics (HEP) can benefit from this technology as well. A 3D TSV prototype using the ATLAS FE-I4 readout electronic chip is described in this paper. This type of readout chip is already prepared for the TSV backside process providing a TSV landing pad in the first metal layer of the backend-of-line (BEOL) layer stack. Based on this precondition a TSV backside via-last process is developed on ATLAS FE-I4 readout chip wafer. The readout chip wafers were thinned to 100 µm and 80 µm final thickness and straight sidewall vias with 60 µm in diameter has been etched into the silicon from wafer backside using deep reactive ion etching (DRIE). The filling of the TSVs and the formation of the wafer backside interconnection were provided by a copper electroplating process. ATLAS FE-I4 readout chips with through silicon vias has been successfully tested, tuned and operated. In addition, hybrid pixel detector modules have been flip chip bonded using ATLAS FE-I4 TSV readout chips and planar sensor chips. After mounting the bare modules onto a support PCB, its full functionality has been verified with a source scan.

Author(s):  
G. Deptuch ◽  
M. Demarteau ◽  
J. Hoff ◽  
R. Lipton ◽  
A. Shenai ◽  
...  

2021 ◽  
Vol 9 ◽  
Author(s):  
Paolo Conci ◽  
Giovanni Darbo ◽  
Andrea Gaudiello ◽  
Claudia Gemme ◽  
Stefano Girardi ◽  
...  

Pixel technology is commonly used in the tracking systems of High Energy Physics detectors with physical areas that have largely increased in the last decades. To ease the production of several square meters of sensitive area, the possibility of using the industrial Wafer Level Packaging to reassemble good single sensor tiles from multiple wafers into a reconstructed full wafer is investigated. This process reconstructs wafers by compression molding using silicon charged epoxy resin. We tested high glass transition temperature low-stress epoxy resins filled with silica particles to best match the thermal expansion of the silicon die. These resins are developed and characterized for industrial processes, designed specifically for fan-out wafer-level package and panel-level packaging. In order to be compatible with wafer processing during the hybridization of the pixel detectors, such as the bump-bonding, the reconstructed wafer must respect challenging technical requirements. Wafer planarity, tile positioning accuracy, and overall thickness are amongst the main ones. In this paper the description of the process is given and preliminary results on a few reconstructed wafers using dummy tiles are reported. Strategies for Wafer Level Packaging improvements are discussed together with future applications to 3D sensors or CMOS pixel detectors.


2021 ◽  
Vol 251 ◽  
pp. 03055
Author(s):  
John Blue ◽  
Braden Kronheim ◽  
Michelle Kuchera ◽  
Raghuram Ramanujan

Detector simulation in high energy physics experiments is a key yet computationally expensive step in the event simulation process. There has been much recent interest in using deep generative models as a faster alternative to the full Monte Carlo simulation process in situations in which the utmost accuracy is not necessary. In this work we investigate the use of conditional Wasserstein Generative Adversarial Networks to simulate both hadronization and the detector response to jets. Our model takes the 4-momenta of jets formed from partons post-showering and pre-hadronization as inputs and predicts the 4-momenta of the corresponding reconstructed jet. Our model is trained on fully simulated tt events using the publicly available GEANT-based simulation of the CMS Collaboration. We demonstrate that the model produces accurate conditional reconstructed jet transverse momentum (pT) distributions over a wide range of pT for the input parton jet. Our model takes only a fraction of the time necessary for conventional detector simulation methods, running on a CPU in less than a millisecond per event.


2002 ◽  
Vol 20 (4) ◽  
pp. 551-554 ◽  
Author(s):  
D. MUELLER ◽  
L. GRISHAM ◽  
I. KAGANOVICH ◽  
R.L. WATSON ◽  
V. HORVAT ◽  
...  

One approach being explored as a route to practical fusion energy uses heavy ion beams focused on an indirect drive target. Such beams will lose electrons while passing through background gas in the target chamber, and therefore it is necessary to assess the rate at which the charge state of the incident beam evolves on the way to the target. Accelerators designed primarily for nuclear physics or high energy physics experiments utilize ion sources that generate highly stripped ions in order to achieve high energies economically. As a result, accelerators capable of producing heavy ion beams of 10 to 40 MeV/amu with charge state 1 currently do not exist. Hence, the stripping cross sections used to model the performance of heavy ion fusion driver beams have, up to now, been based on theoretical calculations. We have investigated experimentally the stripping of 3.4 MeV/amu Kr+7 and Xe+11 in N2; 10.2 MeV/amu Ar+6 in He, N2, Ar, and Xe; 19 MeV/amu Ar+8 in He, N2, Ar, and Xe; 30 MeV He+1 in He, N2, Ar, and Xe; and 38 MeV/amu N+6 in He, N2, Ar, and Xe. The results of these measurements are compared with the theoretical calculations to assess their applicability over a wide range of parameters.


Physics ◽  
2020 ◽  
Vol 2 (4) ◽  
pp. 654-664
Author(s):  
Jean Cleymans ◽  
Masimba Wellington Paradza

We present an overview of a proposal in relativistic proton-proton (pp) collisions emphasizing the thermal or kinetic freeze-out stage in the framework of the Tsallis distribution. In this paper we take into account the chemical potential present in the Tsallis distribution by following a two step procedure. In the first step we used the redudancy present in the variables such as the system temperature, T, volume, V, Tsallis exponent, q, chemical potential, μ, and performed all fits by effectively setting to zero the chemical potential. In the second step the value q is kept fixed at the value determined in the first step. This way the complete set of variables T,q,V and μ can be determined. The final results show a weak energy dependence in pp collisions at the centre-of-mass energy s=20 TeV to 13 TeV. The chemical potential μ at kinetic freeze-out shows an increase with beam energy. This simplifies the description of the thermal freeze-out stage in pp collisions as the values of T and of the freeze-out radius R remain constant to a good approximation over a wide range of beam energies.


2014 ◽  
Vol 2014 ◽  
pp. 1-25 ◽  
Author(s):  
A. Gabrielli

Modern pixel detectors, particularly those designed and constructed for applications and experiments for high-energy physics, are commonly built implementing general readout architectures, not specifically optimized in terms of speed. High-energy physics experiments use bidimensional matrices of sensitive elements located on a silicon die. Sensors are read out via other integrated circuits bump bonded over the sensor dies. The speed of the readout electronics can significantly increase the overall performance of the system, and so here novel forms of readout architectures are studied and described. These circuits have been investigated in terms of speed and are particularly suited for large monolithic, low-pitch pixel detectors. The idea is to have a small simple structure that may be expanded to fit large matrices without affecting the layout complexity of the chip, while maintaining a reasonably high readout speed. The solutions might be applied to devices for applications not only in physics but also to general-purpose pixel detectors whenever online fast data sparsification is required. The paper presents also simulations on the efficiencies of the systems as proof of concept for the proposed ideas.


2017 ◽  
Vol 12 (01) ◽  
pp. C01073-C01073 ◽  
Author(s):  
L. Lama ◽  
G. Balbi ◽  
D. Falchieri ◽  
G. Pellegrini ◽  
C. Preti ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document