readout electronic
Recently Published Documents


TOTAL DOCUMENTS

21
(FIVE YEARS 8)

H-INDEX

2
(FIVE YEARS 1)

2022 ◽  
Vol 17 (01) ◽  
pp. C01029
Author(s):  
T. Fritzsch ◽  
F. Huegging ◽  
P. Mackowiak ◽  
K. Zoschke ◽  
M. Rothermund ◽  
...  

Abstract The through silicon via (TSV) technology has been introduced in a wide range of electronic packaging applications. Hybrid pixel detectors for X-ray imaging and for high-energy physics (HEP) can benefit from this technology as well. A 3D TSV prototype using the ATLAS FE-I4 readout electronic chip is described in this paper. This type of readout chip is already prepared for the TSV backside process providing a TSV landing pad in the first metal layer of the backend-of-line (BEOL) layer stack. Based on this precondition a TSV backside via-last process is developed on ATLAS FE-I4 readout chip wafer. The readout chip wafers were thinned to 100 µm and 80 µm final thickness and straight sidewall vias with 60 µm in diameter has been etched into the silicon from wafer backside using deep reactive ion etching (DRIE). The filling of the TSVs and the formation of the wafer backside interconnection were provided by a copper electroplating process. ATLAS FE-I4 readout chips with through silicon vias has been successfully tested, tuned and operated. In addition, hybrid pixel detector modules have been flip chip bonded using ATLAS FE-I4 TSV readout chips and planar sensor chips. After mounting the bare modules onto a support PCB, its full functionality has been verified with a source scan.


2021 ◽  
Vol 54 (6) ◽  
Author(s):  
Zhigang Jiang ◽  
Hui Gong ◽  
Jianmin Li ◽  
Xuewu Wang ◽  
Yongqiang Wang

A position-sensitive thermal neutron detector module based on multi-layer boron-lined tubes has been developed. It is designed for the CPHS (compact pulsed hadron source) SANS (small-angle neutron scattering) instrument [Loong et al. (2012). Phys. Procedia, 26, 8–18]. The detector module consists of 64 boron-lined tubes, arranged into an eight row by eight column structure. Several key aspects of the development of the detector prototype are briefly covered, including the detector module structure design, the readout electronic system and the digital filter of neutron waveforms. Preliminary characterization reveals that the detector module could achieve an average axial spatial resolution of 5.62 mm and a good position linearity. The detection efficiency measurement shows that more than 30% efficiency can be achieved for thermal neutrons on the CPHS. A virtual experiment was conducted to evaluate the performance of the multi-layer boron-lined tubes in SANS measurement; the effect of inside detector scattering of the multi-layer detector was simulated. The result shows that, by implementing proper data reduction, the impact of inside detector scattering on the Q (momentum transfer) value and Q resolution is negligible.


Author(s):  
Kangwei Ma ◽  
Fei Zhou ◽  
Yacong Zhang ◽  
Wengao Lu ◽  
Zhongjian Chen

2021 ◽  
Vol 6 (1) ◽  
pp. 68
Author(s):  
Jorge Jimenez ◽  
Antoni Grau

To make Europe competitive in the field of astronomical sensors and detectors, the main goal of this research is to provide the capability to manufacture high performance infrared focal plane arrays (FPA) devoted to scientific and astronomical ground and space telescope missions. This paper presents the main outcome of an international project with the highest standard of quality for this detector. The resulting detector is a sensor with a hybridized MCT (HgCdTe) epilayer on a CdZnTe substrate of 2 k × 2 k pixels and 15 μm of pixel pitch. On this framework, an optical setup has been developed at the IFAE optical laboratory with the capabilities to perform the characterization of a near-infrared (NIR) detector covering the range from 800 to 2500 nm. The optical setup is mainly composed of a power controlled quartz–halogen (QTH) lamp and an astigmatism-corrected Czerny–Turner monochromator with two diffraction gratings covering the detector wavelength range with a minimum resolution of ∼1 nm. A temperature stabilized gold-coated integration sphere provides a uniform and monochromatic illumination, while an InGaAs photodiode located at the north pole of the integration sphere is used to measure the radiant flux toward the detector. The whole setup is fully controlled by a Labview™ application and synchronized with the detector’s readout electronic (ROE).


2020 ◽  
Vol 63 (5) ◽  
pp. 647-656
Author(s):  
E. N. Ardashev ◽  
S. N. Golovnya ◽  
S. A. Gorokhov ◽  
A. A. Kiryakov ◽  
V. S. Petrov ◽  
...  

Sensors ◽  
2019 ◽  
Vol 20 (1) ◽  
pp. 72 ◽  
Author(s):  
Ollivier Tamarin ◽  
Maxence Rube ◽  
Jean Luc Lachaud ◽  
Vincent Raimbault ◽  
Dominique Rebière ◽  
...  

This paper presents an experimental platform allowing in situ measurement in an aqueous medium using an acoustic Love wave sensor. The aim of this platform, which includes the sensor, a test cell for electrical connections, a microfluidic chip, and a readout electronic circuit, is to realize a first estimation of water quality without transportation of water samples from the field to the laboratory as a medium-term objective. In the first step, to validate the ability of such a platform to operate in the field and in Amazonian water, an isolated and difficult-to-access location, namely, the floodplain Logo Do Curuaï in the Brazilian Amazon, was chosen. The ability of such a platform to be transported, installed on site, and used is discussed in terms of user friendliness and versatility. The response of the Love wave sensor to in situ water samples is estimated according to the physical parameters of Amazonian water. Finally, the very good quality of the acoustic response is established, potential further improvements are discussed, and the paper is concluded.


2017 ◽  
Vol 1 (T4) ◽  
pp. 197-204
Author(s):  
Hai Hong Vo ◽  
Hung Quoc Nguyen ◽  
Tuyet Kim Tran

Field-programmable gate array (FPGA) technology has been widely used in setting up triggering systems and DAQ systems for radiation detectors, because it has several advantages such as fast digital processing, compact, programmable and high stability. Since 2010, with we have developed FPGA-based trigger systems and FPGA-based DAQ systems used for radiation detectors. Triggering systems for cosmic ray measurements, readout electronic for environmental radiation monitor in air. We also developed nuclear electronic equipment such as spectrum analyzer MCA (Flash-ADC/FPGA based), the pulse generator, counters, readout electronic for multiple radiation sensors. In this paper, we present two experiments, on the cosmic-ray induced response on the NaI(Tl) detector and environmental radiation monitoring system. For those experiments, trigger system are built by FPGA-based technology.


Sign in / Sign up

Export Citation Format

Share Document