scholarly journals Improving meteorological drought monitoring capability over tropical and subtropical water-limited ecosystems: evaluation and ensemble of the Microwave Integrated Drought Index

2019 ◽  
Vol 14 (4) ◽  
pp. 044025 ◽  
Author(s):  
Anzhi Zhang ◽  
Gensuo Jia ◽  
Hesong Wang
2020 ◽  
Vol 12 (11) ◽  
pp. 1700
Author(s):  
Yuanhuizi He ◽  
Fang Chen ◽  
Huicong Jia ◽  
Lei Wang ◽  
Valery G. Bondur

Droughts are one of the primary natural disasters that affect agricultural economies, as well as the fire hazards of territories. Monitoring and researching droughts is of great importance for agricultural disaster prevention and reduction. The research significance of investigating the hysteresis of agricultural to meteorological droughts is to provide an important reference for agricultural drought monitoring and early warnings. Remote sensing drought monitoring indices can be employed for rapid and accurate drought monitoring at regional scales. In this paper, the Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation indices and the surface temperature product are used as the data sources. Calculating the temperature vegetation drought index (TVDI) and constructing a comprehensive drought disaster index (CDDI) based on the crop growth period allowed drought conditions and spatiotemporal evolution patterns in the Volgograd region in 2010 and 2012 to be effectively monitored. The causes of the drought were then analyzed based on the sensitivity of a drought to meteorological factors in rain-fed and irrigated lands. Finally, the lag time of agricultural to meteorological droughts and the hysteresis in different growth periods were analyzed using statistical analyses. The research shows that (1) the main drought patterns in 2010 were spring droughts from April to May and summer droughts from June to August, and the primary drought patterns in 2012 were spring droughts from April to June, with an affected area that reached 3.33% during the growth period; (2) local drought conditions are dominated by the average surface temperature factor. Rain-fed lands are sensitive to the temperature and are therefore prone to summer droughts. Irrigated lands are more sensitive to water shortages in the spring and less sensitive to extremely high temperature conditions; (3) there is a certain lag between meteorological and agricultural droughts during the different growth stages. The strongest lag relationship was found in the planting stage and the weakest one was found in the dormancy stage. Therefore, the meteorological drought index in the growth period has a better predictive ability for agricultural droughts during the appropriately selected growth stages.


2021 ◽  
Vol 21 (4) ◽  
pp. 1323-1335
Author(s):  
Zheng Liang ◽  
Xiaoling Su ◽  
Kai Feng

Abstract. Monitoring drought and mastering the laws of drought propagation are the basis for regional drought prevention and resistance. Multivariate drought indicators considering meteorological, agricultural and hydrological information may fully describe drought conditions. However, series of hydrological variables in cold and arid regions that are too short or missing make it difficult to monitor drought. This paper proposed a method combining Soil and Water Assessment Tool (SWAT) and empirical Kendall distribution function (KC′) for drought monitoring. The SWAT model, based on the principle of runoff formation, was used to simulate the hydrological variables of the drought evolution process. Three univariate drought indexes, namely meteorological drought (standardized precipitation evapotranspiration index; SPEI), agricultural drought (standardized soil moisture index; SSI) and hydrological drought (standardized streamflow drought index; SDI), were constructed using a parametric or non-parametric method to analyze the propagation time from meteorological drought to agricultural drought and hydrological drought. The KC′ was used to build a multivariable comprehensive meteorology–agriculture–hydrology drought index (MAHDI) that integrated meteorological, agricultural and hydrological drought to analyze the characteristics of a comprehensive drought evolution. The Jinta River in the inland basin of northwestern China was used as the study area. The results showed that agricultural and hydrological drought had a seasonal lag time from meteorological drought. The degree of drought in this basin was high in the northern and low in the southern regions. MAHDI proved to be acceptable in that it was consistent with historical drought records, could catch drought conditions characterized by univariate drought indexes, and capture the occurrence and end of droughts. Nevertheless, its ability to characterize mild and moderate droughts was stronger than severe droughts. In addition, the comprehensive drought conditions showed insignificant aggravating trends in spring and summer and showed insignificant alleviating trends in autumn and winter and at annual scales. The results provided theoretical support for the drought monitoring in the Jinta River basin. This method provided the possibility for drought monitoring in other watersheds lacking measured data.


2020 ◽  
Author(s):  
Zheng Liang ◽  
Xiaoling Su ◽  
Kai Feng

Abstract. Reliable drought monitoring and mastering the laws of drought propagation are the basis for regional drought prevention and resistance. Multivariate drought indicators considering meteorological, agricultural, and hydrological information may fully describe drought information; however, too short or missing hydrological variables in cold and arid regions make it difficult to monitor drought. This paper proposes a method combining SWAT and empirical Kendal distribution function (KC') for drought monitoring. The SWAT model, based on the principle of runoff formation, was used to simulate the hydrological variables of the drought evolution process. Three univariate drought indexes, namely meteorological drought (SPEI), agricultural drought (SSI), and hydrological drought (SDI) were constructed using parametric and non-parametric methods to analyze the propagation time of meteorological drought to agricultural drought and hydrological drought. The KC' was used to build a multivariable comprehensive Meteorology–Agriculture–Hydrology Drought Index (MAHDI) that takes into account meteorological, agricultural and hydrological drought to analyze the characteristics of a comprehensive drought evolution. The Jinta River in the inland basin of northwest China was used as the study area. The results show that agricultural and hydrological drought have a seasonal lag time for meteorological drought. The degree of drought in the river basin is high in the northern and low in the southern regions. The MAHDI captured drought conditions characterized by a univariate drought index; however, the ability to characterize mild and moderate droughts is stronger than severe droughts. The index also captured the occurrence and end of drought time; therefore, it is an acceptable comprehensive drought index. In addition, the comprehensive drought conditions showed insignificant drought trends in spring and summer, and showed insignificant warm and humidification trends in autumn, winter and annual scale. The results provided theoretical support for the drought control in the Jinta River Basin. This method may be applied for drought monitoring in other watersheds with a shortage of measured data.


2011 ◽  
Vol 24 (8) ◽  
pp. 2025-2044 ◽  
Author(s):  
Martha C. Anderson ◽  
Christopher Hain ◽  
Brian Wardlow ◽  
Agustin Pimstein ◽  
John R. Mecikalski ◽  
...  

Abstract The reliability of standard meteorological drought indices based on measurements of precipitation is limited by the spatial distribution and quality of currently available rainfall data. Furthermore, they reflect only one component of the surface hydrologic cycle, and they cannot readily capture nonprecipitation-based moisture inputs to the land surface system (e.g., irrigation) that may temper drought impacts or variable rates of water consumption across a landscape. This study assesses the value of a new drought index based on remote sensing of evapotranspiration (ET). The evaporative stress index (ESI) quantifies anomalies in the ratio of actual to potential ET (PET), mapped using thermal band imagery from geostationary satellites. The study investigates the behavior and response time scales of the ESI through a retrospective comparison with the standardized precipitation indices and Palmer drought index suite, and with drought classifications recorded in the U.S. Drought Monitor for the 2000–09 growing seasons. Spatial and temporal correlation analyses suggest that the ESI performs similarly to short-term (up to 6 months) precipitation-based indices but can be produced at higher spatial resolution and without requiring any precipitation data. Unique behavior is observed in the ESI in regions where the evaporative flux is enhanced by moisture sources decoupled from local rainfall: for example, in areas of intense irrigation or shallow water table. Normalization by PET serves to isolate the ET signal component responding to soil moisture variability from variations due to the radiation load. This study suggests that the ESI is a useful complement to the current suite of drought indicators, with particular added value in parts of the world where rainfall data are sparse or unreliable.


2020 ◽  
Author(s):  
Muhammad Khan ◽  
He Jiang ◽  
Zulfiqar Ali ◽  
Amna Nazeer ◽  
Guangheng Ni ◽  
...  

Abstract Due to climate change and an increasing temperature, drought is prevailing in several parts of the globe. Therefore, drought monitoring is a challenging task in hydrology and water management research. Drought is occurring recurrently in various climatic zones around the world. In literature, in that respect, there are several drought monitoring indicators. Regardless of their pros and cons, their abounded creates a chaotic scenario in analysis and reanalysis in certain gauge station. This research aims to improve drought monitoring system by providing a comprehensive data mining approach under principle component analysis. Consequently, we propose a new index named: Seasonal Mixture Standardized Drought Index (SMSDI). In our preliminary analysis, we have included three multiscaler Standardized Drought Indices (SDIs). In application, we have applied our proposed indicator on three meteorological gauge stations located in Pakistan. For comparative assessment, individual SDI has used to investigate the association and consistency with SMSDI. Results presented in the current study demonstrated that the SMSDI has significant correlation with individual SDIs. Hence, we conclude that the procedure of SMSDI can be deployed in hydrology and water management research for extracting reliable information related to future drought.


2021 ◽  
Author(s):  
Tianliang Jiang ◽  
Xiaoling Su

<p>Although the concept of ecological drought was first defined by the Science for Nature and People Partnership (SNAPP) in 2016, there remains no widely accepted drought index for monitoring ecological drought. Therefore, this study constructed a new ecological drought monitoring index, the standardized ecological water deficit index (SEWDI). The SEWDI is based on the difference between ecological water requirements and consumption, referred to as the standardized precipitation index (SPI) method, which was used to monitor ecological drought in Northwestern China (NWRC). The performances of the SEWDI and four widely-used drought indices [standardized root soil moisture index (SSI), self-calibrated Palmer drought index (scPDSI), standardized precipitation-evaporation drought index (SPEI), and SPI) in monitoring ecological drought were evaluated through comparing the Pearson correlations between these indices and the standardized normalized difference vegetation index (SNDVI) under different time scales, wetness, and water use efficiencies (WUEs) of vegetation. Finally, the rotational empirical orthogonal function (REOF) was used to decompose the SEWDI at a 12-month scale in the NWRC during 1982–2015 to obtain five ecological drought regions. The characteristics of ecological drought in the NWRC, including intensity, duration, and frequency, were extracted using run theory. The results showed that the performance of the SEWDI in monitoring ecological drought was highest among the commonly-used drought indices evaluated under different time scales [average correlation coefficient values (r) between SNDVI and drought indices: SEWDI<sub></sub>= 0.34, SSI<sub></sub>= 0.24, scPDSI<sub></sub>= 0.23, SPI<sub></sub>= 0.20, SPEI<sub></sub>= 0.18), and the 12-month-scale SEWDI was largely unaffected by wetness and WUE. In addition, the results of the monitoring indicated that serious ecological droughts in the NWRC mainly occurred in 1982–1986, 1990–1996, and 2005–2010, primarily in regions I, II, and V, regions II, and IV, and in region III, IV, and V, respectively. This study provides a robust approach for quantifying ecological drought severity across natural vegetation areas and scientific evidence for governmental decision makers.</p>


2019 ◽  
Vol 71 (1) ◽  
pp. 1604057 ◽  
Author(s):  
Zulfiqar Ali ◽  
Ijaz Hussain ◽  
Muhammad Faisal ◽  
Elsayed Elsherbini Elashkar ◽  
Showkat Gani ◽  
...  

Author(s):  
T. Tadesse ◽  
D. A. Wilhite

Drought is a natural disaster that influences many aspects of society. Since the demand for water is increasing along with the population in many parts of the world, water supply interruptions caused by drought can be expected to produce greater impacts. This is because the impacts of drought are determined not only by the frequency and intensity of meteorological drought but also by the number of people at risk and their degree of risk (Wilhite, 2000). For example, the increase in population in Africa and Asia increases drought vulnerability significantly. Thus, policies that promote the development and implementation of appropriate drought mitigation measures today will help to reduce the economic, social, and environmental impacts associated with future droughts and the need for government intervention. To monitor drought, different types of indicators (e.g., drought indices) have been used in many parts of the world. Because there is no single definition for drought, determining which indicators to use poses more difficulties for planners. Decision makers use different policies and strategies based on the historical records of their countries. For example, in Australia, when meteorological drought (annual rainfalls in the lowest 10% of recorded values) occurred over at least 10% of the continent, it coincided with damaging agricultural droughts resulting significant losses of crops and livestock (Heathcote, 2000). Because of the varied and potentially catastrophic losses resulting from drought in many parts of the world, both governmental and non-governmental decision makers need better predictive and monitoring tools to assist them in dealing more effectively with drought. Better early warning and prediction is the foundation of a new drought management paradigm based on risk management. In South Africa, the Weather Bureau issues extended outlooks for short and long periods using numerical modeling and statistical methods (Vogel, Lang, & Monnik, 2000). In United States, recent advances in science and technology are enhancing drought monitoring capabilities and the availability of such information, which allows decision makers to make more knowledge-based decisions to lessen the impacts of drought. In this article, we highlight the role of government in drought planning and mitigation, the potential of data mining techniques and their outputs (e.g., maps and tables) for improving informed decision making, and also present a newly developed drought monitoring tool, the Vegetation Drought Response Index (VegDRI) as an example over the central United States.


Sign in / Sign up

Export Citation Format

Share Document