scholarly journals A surface modelling approach for attribution and disentanglement of the effects of global warming from urbanization in temperature extremes: application to Lisbon

2019 ◽  
Vol 14 (11) ◽  
pp. 114023 ◽  
Author(s):  
Miguel Nogueira ◽  
Pedro M M Soares
Author(s):  
Xuerong Sun ◽  
Fei Ge ◽  
Yi Fan ◽  
Shoupeng Zhu ◽  
Quanliang Chen

Abstract Temperature extremes have increased during the past several decades and are expected to intensify under current rapid global warming over Southeast Asia (SEA). Exposure to rising temperatures in highly vulnerable regions affects populations, ecosystems, and other elements that may suffer potential losses. Here, we evaluate changes in temperature extremes and future population exposure over SEA at global warming levels (GWLs) of 2.0 °C and 3.0 °C using outputs from the Coupled Model Intercomparison Project Phase 6 (CMIP6). Results indicate that temperature extreme indices are projected to increase over SEA at both GWLs, with more significant magnitudes at 3.0 °C. However, daily temperature ranges (DTR) show a decrease. The substantial increase in total SEA population exposure to heat extremes from 730 million person-days at 2.0 °C GWL to 1,200 million person-days at 3.0 °C GWL is mostly contributed by the climate change component, accounting for 48%. In addition, if the global warming is restricted well below 2.0 °C, the avoided impacts in population exposure are prominent for most regions over SEA with the largest mitigation in the Philippines (PH). Aggregate population exposure to impacts is decreased by approximately 39% at 2.0 °C GWL, while the interaction component effect, which is associated with increased population and climate change, would decrease by 53%. This indicates the serious consequences for growing populations concurrent with global warming impacts if the current fossil-fueled development pathway is adhered to. The present study estimates the risks of increased temperature extremes and population exposure in a warmer future, and further emphasizes the necessity and urgency of implementing climate adaptation and mitigation strategies in SEA.


2018 ◽  
Vol 9 (2) ◽  
pp. 120-129 ◽  
Author(s):  
Chen Shi ◽  
Zhi-Hong Jiang ◽  
Wei-Lin Chen ◽  
Laurent Li

2020 ◽  
pp. 94-107
Author(s):  
Atsamon Limsakul

Trends in Thailand’s extreme temperature indices and their relationship with global mean temperature (GMT) change are analyzed, based on longer quality controlled temperature data during 1955–2018. Widespread significant trends of extreme temperature indices with a clear warming evident in all indices are observed, consistent with the earlier results and general global warming. Changes associated with the upper tails of the minimum and maximum temperature distributions are the dominant feature of Thailand’s extreme temperature indices accounting for more than 65% of the total variance. Analysis of the probability distribution functions (PDFs) of combined extreme temperature indices further shows significant shifts in their distributions toward warmer conditions in the recent decades. The results suggest that daytime and nighttime temperatures in Thailand have become more extreme and that the changes are related to shifts in multiple aspects of the daily temperature distributions. With long-term temperature records, this study provides more confident and robust evidence of trends in Thailand’s temperature extremes occurred since the second half of 20th century. Another noteworthy finding is that most of Thailand’s extreme temperature indices show a distinct linear relationship with GMT, indicating that local-scale changes in temperatures and its extreme at local scale are related almost linearly to GMT change. The extrapolated values of the indices with strong linearity with GMT show substantial distinction with nearly 50% increase between 2 global warming levels set by Paris Agreement, highlighting that half a degree increase in GMT will lead to greatly increase in Thailand’s temperature extremes.


2020 ◽  
Author(s):  
Arielle Catalano ◽  
Paul Loikith ◽  
J. David Neelin

<p>Under global warming, changes in extreme temperatures will manifest in more complex ways in locations where temperature distribution tails deviate from Gaussian. For example, uniform warming applied to a temperature distribution with a shorter-than-Gaussian warm tail would lead to greater exceedances in warm-side temperature extremes compared with a Gaussian distribution. Confidence in projections of future temperature extremes and associated impacts under global warming therefore relies on the ability of global climate models (GCMs) to realistically simulate observed temperature distribution tail behavior. This presentation examines the ability of the latest state-of-the-art ensemble of GCMs from the Coupled Model Intercomparison Project phase six (CMIP6) to capture historical global surface temperature distribution tail shape in hemispheric winter and summer seasons. Comparisons between the multi-model ensemble mean and a reanalysis product reveal strong agreement on coherent spatial patterns of longer- and shorter-than-Gaussian tails for the cold and warm sides of the temperature distribution, suggesting that CMIP6 is broadly capturing tail behavior for plausible physical and dynamical reasons. Most individual GCMs are also reasonably skilled at capturing historical tail shape on a global scale, but a division of the domain into sub-regions reveals considerable model and spatial variability. To explore potential mechanisms driving these differences, a back trajectory analysis examining patterns in the origin of air masses on days experiencing extreme temperatures is also discussed.</p>


2015 ◽  
Vol 95 (4) ◽  
pp. 53-66 ◽  
Author(s):  
Dragan Buric ◽  
Vladan Ducic ◽  
Jovan Mihajlovic ◽  
Jelena Lukovic ◽  
Jovan Dragojlovic

The studies show that the changes in intensity and frequency of the extreme weather events have been registered in many regions of the world. This paper gives an analysis of the change of 12 air temperature parameters, out of which 9 are climate indices. The indices suggested by WMO-CCL/CLIVAR have been used in order to investigate the changes in temperature extremes. The research related to the topic has been carried out by using the data from 23 meteorological stations for the 1951 - 2010 period and calculations have been done on the seasonal level. The results show that the maximum and minimum air temperatures, which have ?warmer values?, are becoming more frequent on the territory of Montenegro which corresponds to the general idea of global warming.


Sign in / Sign up

Export Citation Format

Share Document